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ABSTRACT
We propose a framework where the human-robot interaction
is modeled as a multimodal dialogue which is regulated by
an attentional system that guides the robot towards the ex-
ecution of structured tasks. Specifically, we propose an ap-
proach where the dialogue between the human and the robot
is represented as a POMDP, while the associated dialogue
policy is enhanced by top-down attentional mechanisms that
provides contextual and task-related contents. We introduce
a simple case study that illustrates the system at work in
different conditions considering top-down regulations and di-
alogue flows in synergic and conflicting situations.

Categories and Subject Descriptors
I.2.9 [Robotics]: [Operator interfaces, Commercial robots
and applications]; I.2.8 [Artificial Intelligence]: [Plan ex-
ecution, formation, and generation]

Keywords
Attentional System, Cognitive Control, Dialogue Manager

1. INTRODUCTION
Attentional regulation and dialogue management can play

a crucial role in social robotics and human-robot interaction
[4]. Indeed, a natural and effective interaction between hu-
mans and robots can be modeled as a multimodal dialogue
flow, involving speech, gaze orientation, gestures, while at-
tentional mechanisms can be used to orient and focus the
robotic (and the human) perceptive and cognitive processes
during the interaction. Some authors addressed these is-
sues considering visual attention during human-robot con-
versation [16, 13, 18] used to detect the human to inter-
act with or the task to be executed. Other authors mainly
focused on joint attention and perspective taking methods
for human-robot interaction [5, 23]. Differently from these
approaches, which are mainly concerned with visual atten-
tion only, in this paper we focus on executive attentional
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mechanisms regulating the human-robot dialogical interac-
tion. More specifically, we aim at defining a system that can
manage and regulate the multimodal dialogue between the
human and the robot by exploiting top-down and bottom-
up attentional regulations. Inspired by attention and cog-
nitive control literature in psychology and neuroscience [19,
9], we assume that the attentional influence can be driven
by both higher level tasks/templates (top-down) and exter-
nal/internal stimuli (bottom-up). In this context, the role of
attentional mechanisms is to orchestrate multiple processes,
at different levels of abstraction, possibly in conflicts. In this
paper, we propose a multimodal real-time HRI system inte-
grating a dialogue manager and a hybrid cognitive control
architecture. Following the approach of [12], the dialogue be-
tween the human and the robot is modeled as a Partially Ob-
servable Markov Decision Process (POMDP) that can cap-
ture the inherent ambiguity of the situated communication.
In the HRI framework proposed in this paper, the generated
dialogue policy provides an interaction multimodal template
(involving not only speech, but also gestures, gaze directions,
etc.) which can be instantiated and continuously adjusted
with respect to the environmental and the operative con-
text by the attentional system. The cognitive control cycle
modulates and polarizes the robot execution by enhancing
the attentional processes which are aligned with the opera-
tive (top-down) and environmental (bottom-up) state, while
inhibiting the ones which are not coherent. In order to illus-
trate the system at work, we introduce a case study where
the human and the robot have to interact in simple pick, de-
livery, and place tasks. In this context, we show the system
behavior during complementary and conflicting tasks.

2. THE HRI FRAMEWORK
The HRI architecture proposed in this paper is depicted

in Figure 1, the main components of the system will be ex-
plained below.

2.1 System Architecture
The cognitive control cycle proposed in this paper involves

three main modules: a behavior pool (BP), a working mem-
ory (WM) and a long term memory (LTM).

The BP contains a set of behaviors which may contribute
to the execution of a complex cognitive task. The WM con-
tains a representation of the current executive state and a
representation of the tasks which are in the attentional fo-
cus of the system. These include all the tasks the system is
executing or willing to execute. Finally, the LTM is a repos-
itory which contains the definition of all the tasks available



Figure 1: The global Framework

to the system. The cognitive control cycle is managed by a
special behavior called alive which continuously updates the
behavior pool and the working memory exploiting the task
definitions provided by the LTM. This process will be better
detailed below.

2.1.1 Attentional behaviors.
We assume that each behavior of the BP is structured

as in [6]. Specifically, following a schema theory approach,
a behavior is composed of a Perceptual Schema (PS) [1],
which elaborates sensor data, a Motor Schema (MS), pro-
ducing the pattern of motor actions, and a control mecha-
nism, based on a combination of a clock and a releaser (see
Figure 2). In particular, the releaser enables/disables the
activation of the MS, while the clock regulates the behav-
ioral arousal, that is, the sensory sampling rate and the fre-
quency of behavior activations. This regulation represents
our bottom-up attentional mechanism, indeed it tunes the
resolution at which a behavior is monitored and controlled.
For additional details about this model we refer the reader to
[6]. Differently from [6], in the system proposed in this work
the clock frequency can be modulated either by the percep-
tual stimuli (bottom-up) or by the executive state of the
system exploiting the structures that are represented in the
WM (top-down). Analogously, we introduce an additional
external releasing mechanism that can enable the behavior
activations depending on the executive state of the system.

Figure 2: Schema theory representation of an atten-
tional behavior.

2.1.2 Working Memory.
The WM is a critical element of the system because it

maintains the executive state and the structure of the tasks
in the attentional focus of the system. In our system, the

tasks in the WM are represented as a unbalanced tree [17,
7, 8, 2] (see Figure 3) enhanced with additional informa-
tion about the behavior execution (clock frequency, releaser
status, variables, etc.). This herarchical structure follows a
typical representation sheared by both artificial and biolog-
ical models of tasks [20, 17, 7, 8, 2]. Each node of the WM
can be classified in two categories:

• Concrete, if it represents an instance of an attentional
behavior of the system (e.g. pickUp(objRed) in Figure
3).

• Abstract, if it represents only a chunk [14] which may
be hierarchically decomposed in a different subtasks
(e.g. take(objRed) in Figure 3) .

In this context, our cognitive cycle exploits the WM as
follows. Initially, we assume a set of behaviors allocated to
manage the basic system activities (e.g. alive, interaction
block, etc.). Each behavior in the BP can affect the WM by
inserting new nodes. For example, if the interaction block al-
locates a take(objRed) as a consequence of a human request,
then alive (which is periodically activated to check for new
nodes at each clock tic) will try to expand take(objRed) (see
Figure 3) allocating other nodes as specified in the LTM.
LTM contains production rules (see Figure 3-(b)). Analo-
gously to [11], these represent hierarchical definitions of the
available behaviors. When a concrete node is allocated in
the WM, the associated behavior is awakened by alive. The
tree structure of WM, is also endowed with an external re-
leaser (ER) for each node. These ERs (green in Figure 3-(a))
are boolean expressions that represent guards to be satisfied
in order to enable the execution of a behavior. Therefore,
in order to activate a behavior both its ER and the ERs of
the ancestors must be satisfied besides the internal releaser.
Finally, a node could be also provided with a goal, which
is achieved after the completion of the behavior (teleological
nodes).

(a) Hierarchical task

(b) Subtree expansion

Figure 3: (a) Hierarchical task in the WM; (b) Def-
inition/expansion cycle.

2.1.3 Emphasis.
The control cycle described above connects the execution

of multiple behaviors with the hierarchical task structure
provided in the WM, however, no explicit mechanism is pro-
vided to avoid conflicts or erratic activities. For instance,



many behaviors may access to a single resource in WM, gen-
erating a crosstalk interference [15]. These conflicts can be
either prohibited by construction or solved by means of an
evaluation function [3]. In our architecture, we follow the
latter approach introducing a function that we call empha-
sis. This function provides a modulation mechanism which
is obtained as the integration of two types of influences on
the concrete behaviors:

• Frequency of the behavioral clock induced by the per-
ceptual stimuli.

• Magnitude externally induced by heuristics or influ-
enced by other behaviors.

The first one represents a bottom-up and self-induced at-
tentional mechanism, while the second captures top-down
and lateral influences. Therefore, the attentional state of
each behavioral schema in the tree is defined by the cou-
ple (pi,mi) representing, respectively, the frequency by the
clock period pi and the magnitude mi. The emphasis is de-
fined as ei = mi/pi. By default, the magnitude is set to 1
for each node in the tree; if a node changes its magnitude,
this is inherited by all the child nodes. In our system, we
introduce a heuristic that changes the magnitudes according
to subgoal achievements. Namely, when a subgoal is accom-
plished, the parent emphasis of the node is increased by a
constant value (which is then propagated to the child nodes).
This mechanism induces a soft teleological drive towards the
completion of the open subtasks. The emphasis affects both
the adaptive clock and the output values. More specifically,
the clock period is reduced by mi (with mi ≥ 1), hence the
updated period is p′i = 1/ei. As for the output, given a vari-
able v (e.g. the velocities of the motors) in the WM which is
affected by the output of a set of behaviors bi, the emphasis
is exploited to weight and combine these multiple contribu-
tions as follows: v = Σi(ei × vi)/Σi(ei). These two effects
of the emphasis (acceleration of the clock and modulation
of the combined outputs) allows us to solve the conflicts in
a smooth way: not only the emphasized behaviors provide
more frequent updates, but also their contribution is ampli-
fied. Since the amplification is associated to a drive towards
the goal accomplishment, the goal-oriented behaviors be-
come dominant, in so overcoming behaviors contentions and
decisional impasses (see Figure 4).

Figure 4: Example of conflicting tasks.

2.2 Dialogue Management System
The multimodal interaction block is appointed to recog-

nize the multiple human commands and actions, such as
utterances, gaze directions, gestures or body postures, and
to provide an interpretation of user’s intentions according
to the dialogue context. It is integrated in the overall ar-
chitecture as a special behavior and it is composed of three
layers: the lower layer contains the classifiers of the single

modalities; the middle layer, the fusion engine, performs a
Support Vector Machine (SVM)-based late fusion and pro-
vides a context-free integration of the multiple inputs [21];
the upper layer, the dialogue manager [12], performs the
coordination of the dialogue and accomplishes the seman-
tic interpretation of the observations according to the con-
text and the inner knowledge. The main feature of such
structure is that the results of each layer are N-best lists of
possible interpretations, which are fed to the next layer in
order to solve in cascade the ambiguities at the upper lay-
ers of the system. The dialogue manager is the upper layer
of the interaction block that provides the interaction policy
depending on the iteraction model. The dialogue models are
provided as graph-based specifications. An example of dia-
logue graph describing a simple interaction scenario is shown
in Figure 5. Our approach is to represent the dialogue flow
as a POMDP (Partially Observable Markov Decision Pro-
cess) to cast the inherent ambiguity in order to account for
noise on the channels, misunderstanding of human actions
or commands, multiple interpretations of a particular obser-
vation or non-deterministic effects of robot actions. In this
context, the solution of the POMDP is a robust dialogue
strategy off-line generated for that interaction model.

More specifically, the POMDP model used in our system
is a multimodal version of the one proposed by [24, 22].
In this framework, the dialogue is represented as a tuple
(S,Am, T (·, ·, ·), r(·, ·), O, Z(·, ·), b0). S = Sflow×Snode×Au

is the set of states. A state is a triple s =< sflow, snode, au >,
where sflow is the identifier (ID) of a dialogue flow, a pos-
sible branch of the conversation; snode is the ID of a sit-
uation which may occur in a dialogue flow; au is the last
observed user action. Am is the set of machine actions, con-
taining the execution actions, which are the response to the
user’s commands or activities, and the control actions, which
are useful to retrieve confirmation or decision by the user.
T (s′, s, am) is the transition probability P (s′|s, am) and R
is the reward function R(s, am) ∈ R. O is the set of the
observations, which are the N-best lists of results provided
by the fusion engine o = [< a1

u, p1 > . . . < an
u, pn >], where

pi = P (ai
u|ō), ai

u ∈ Au. Finally, Z(s, ō) is the observation
probability P (o|s) and b0 is the initial belief state. Addi-
tional details can be found in [12].

Figure 5: Excerpts extracted from dialogue models:
(left) node 1 has the two possible interpretations
“Come Here”and“Close to Me”. The robot action is
to go close to the human from where, in the node 2,
the robot expects that user asks to pick something;
(right) Simple dialogue flow involving “Come Here”
and “Give Object” .

The dialogue policy generated as a solution of the POMDP
provides a machine state am for each belief state of the dia-



logue. This machine action is then associated with a task to
be allocated in WM whose execution is modulated by top-
down and bottom-up attentional mechanisms. In this way,
the machine action in the dialogue policy can be instantiated
with contextual and task-related subtasks and arguments;
moreover, its execution can be regulated by the associated
top-down attentional mechanisms.

3. CASE STUDY
In this section, we discuss the system behavior considering

as a case study a mobile robot that interacts with humans
in a lab scenario. A representation of the environment is
illustrated in Figure 6(down-right).

3.1 HRI scenario.
The robot will share the workspace with several users,

which can interact with the robot to achieve some tasks
such as picking or placing objects like bottles, or carrying
paper sheets to other users. The robotic platform setting
is the following: Pioneer 3 DX mobile robot provided with
ultrasonic sensors and a gripper; RGB-D camera for users
and gesture recognition and a High Definition camera for
object detection; a microphone and a speech synthesizer;
a Cyton 7DOF Pioneer Arm. The users can interact with
the robot by speaking or using gestures or body movements,
while the robot has a list of user dialogue models describing
possible patterns of commands or movements. Each gesture
is linked to one or more meanings, so ambiguities are pos-
sible. The meaning can be disambiguated according to the
dialogue context. On the other hand, some user’s acts are
not explicit commands, therefore the system should inter-
pret the human’s intention supporting the human activity
with a proactive behavior. Furthermore, this scenario of-
fers a wide variety of situations for testing the ability of the
proposed framework in managing multiple requests and in
solving the associated conflicts (pick different objects). In
this case, we assume that the robot can pick up an object
at a time, but it can carry a maximum of two objects.

3.2 Experimental Results.
In this scenario, we can consider cases where the residual

ambiguity in the dialogue policy and the associated decision
conflicts should be resolved by the top down and bottom
up attentional influences. For instance, if the request in-
terpreted from the dialogue is a generic take (without an
explicit reference to the object to be taken) and a green
and a red object are perceived by the robot during the
navigation, the system should decide which object to take.
In this case, the perceived affordances associated with the
two detected objects can directly elicit two instances of a
take task to be allocated as schemata in the WM (e.g.,
take(objRed), take(objGreen)). These schemata are then
decomposed in two subschemata (see Figure 4) represent-
ing the chunks associated with the task: reach the object,
pick it up, and give it to the human. In this way, these
schemata/subschemata enter into the attentional focus of
the robot along with the perceived objects and can be suit-
ably top-down and bottom-up aroused. For instance, in
Figure 6 (up) we can observe that, once a first red ob-
ject is perceived by the robot, the take(objRed) task is
bottom-up aroused by the activations of reachColor(red)
(from 1 to 30) that instantiates the routeto(objRed) in the
WM. After 15 seconds the robot detects also a green ob-

ject, therefore a decision conflict arises. However, in this
case the robot heads towards the read object as an effect
of the reachColor(objRed) dominant activations (bottom-
up influence) with respect to reachColor(objGreen) (see in
Figure 6 (down-left)). Once the red object has been reached,
the subtask can be accomplished by the pickUp(red) behav-
ior. At this point the frequency of take(objRed) is relaxed
because a new subtask give(objRed) is activated. This be-
havior receives the emphasis (top-down influence) from the
take(objRed) that drives give(objRed) towards the goal ac-
complishment. In Figure 6 (up), from time 30 to 55 we can
see the restriction of the period (frequency enhancement)
illustrating the modulation due to the bottom-up influence
(dotted red line) and the one that takes into account also
the effect of the top-down emphasis (continuous red line).

In Table 1, we illustrate 10 runs where the robot (given a
simple dialogue model and its current belief state [12]), in-
terprets as a machine action to be executed an unreferenced
take. To assess the system behavior in this ambiguous sit-
uation, we consider two scenarios: in the first one we have
two objects to be taken (red and greed in Table 1, left);
in a second scenario we have three objects (red, green, and
yellow in Table 1, right). For each scenario we report the
executed sequence of tasks and the time needed to accom-
plish the goal (minutes). The executed sequence illustrates
the subtasks sequence chosen by system (here Red, Greed,
etc. is an abbreviation for, respectively, reach and pick the
object red, reach and pick the object green etc., while Give
represents the delivery action that ends the task). A maxi-
mum of 10 minutes was provided for each run. In order to
test the system in the ability of conflict resolution and flexi-
ble execution of multiple tasks, we allow the robot to collect
two items before the delivery. For instance, in the sequence
“Red Green Give” take(objRed) and take(ObjGreen) are
interleaved, hence the robot first picks the red object, then
it picks the green one, and finally it delivers the two objects
to the human; in other cases, the task are sequentialized
(e.g., in “Red Give Green Give”). Notice that the paral-
lel or sequential execution of the task is left to the system
decisions and depends on the attentional mechanisms and
environmental context.

The results in Table 1 show that the system is always able
to accomplish the goal, and when there is an opportunity it
can also interleave the execution of the tasks (6 times and 7
times in the first and the second scenario respectively), and,
as expected, when this happens the temporal performance
is enhanced. In order to better assess the temporal perfor-
mance, in Table 2 we also report the average and the std
of the values collected after the execution of 10 take tasks
where the referenced object is provided (e.g., take(green)).
By comparing the average values at the end of Table 1 with
the values in Table 2 we can observe that the mean time
needed to accomplish the ambiguous requests is compara-
ble with the mean time needed to achieve the tasks where
the reference is explicitly defined. This seems to suggest that
the conflict resolution mechanism is not time consuming and
effective in managing the impasses.

These preliminary results have been provided mainly to
show the system behavior in the presence of ambiguities and
conflicts during the interaction. Additional and more inten-
sive experimental testing is needed to assess the flexibility
and the effectiveness of the platform. The proposed atten-
tional mechanisms are here mainly elicited by the detec-



EXECUTION TIME
Task Sequence Time (min) Task Sequence Time (min)

TakeRed - TakeGreen TakeRed - TakeGreen - TakeYellow
Red Green Give 4.5 Red Green Give Yellow Give 9.19

Green Give Red Give 7.11 Green Give Red Give Yellow Give 8.19
Green Give Red Give 8.04 Red Green Give Yellow Give 7.21
Green Give Red Give 7.14 Yellow Give Green Give Red Give 9.08

Red Green Give 3.53 Yellow Green Give Red Give 7.28
Green Red Give 3.50 Red Green Give Yellow Give 6.41
Red Green Give 4.19 Red Green Give Yellow Give 7.02

Green Give Red Give 6.04 Red Green Give Yellow Give 7.05
Red Green Give 4.48 Yellow Give Green Give Red Give 9.43
Green Red Give 6.26 Red Green Give Yellow Give 8.48

AVG STD AVG STD
5.48 1.64 7.93 1,07

Table 1: Execution time of generic take in different contexts.

Figure 6: Period modulation (up) and motor drive (down-left) during a conflicting situation in a lab scenario
(down-right): take(objRed) is amplified, hence the frequency and the outputs are enhanced (up) driving the
robot towards the red target (down-left).

tion of gestures, speech, objects, colors however, additional,
and more sophisticated mechanism (e.g. gaze detection and
joint attention [23]) can be easily incorporated in this frame-
work. Analogously, the interaction fluency with the human
remains to be assessed, our working hypothesis is that the
attentional regulation mechanisms presented in this work as-
sociated with the implicit communication in a multimodal
situated dialogue can enhance the overall interaction flexi-
bility, effectiveness, and naturalness [12, 10]. More extensive
tests are left as a future work.

4. CONCLUSIONS
In this paper we presented a novel human-robot interac-

tion system that combines a dialogue system with top-down

EXECUTION TIME (min)
Take-Red Take-Green Take-Yellow

avg std avg std avg std
3.99 0.28 1.48 0.36 2.04 0.27

Table 2: Execution time of the specific take.

and bottom-up attentional modulations. The proposed sys-
tem allows to contextualize the dialogue flow in the opera-
tional situation and solve ambiguous communications. We
described the proposed HRI system architecture introduc-
ing a case study used to illustrate the system behavior in
different scenarios. In particular, we have shown how both



bottom-up and top-down attentional modulations allow the
system to solve decisional impasses driving the system to-
wards the task accomplishment. We presented preliminary
empirical results, a deeper validation of the HRI perfor-
mance is left as a future work.
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