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ABSTRACT
A critical task for a robot designed for interaction in a dynamic
public space is estimating whether each of the people in its vicinity
is currently seeking the robot’s attention. In previous work, we
implemented two strategies for estimating the attention-seeking
state of customers for a robot bartender—a rule-based classifier
derived from the analysis of natural human behaviour, and a set of
classifiers trained using supervised learning on a labelled multimodal
corpus—and compared the classifiers through cross-validation and
in the context of a full-system evaluation. However, because the
ground-truth user behaviour was not available, the user study did
not fully assess the classifier performance. We therefore carried
out a new study validating the performance of all classifiers on
a newly recorded, fully labelled test corpus. The highest-scoring
trained classifier from the cross-validation study performed very
badly on this new test data, while the hand-coded rule and other
trained classifiers did much better. We also explored the impact of
including information from previous frames in the classifier state:
including previous sensor data had a mixed effect, while including
the previous attention estimates greatly diminished the performance
of all classifiers.
Categories and Subject Descriptors: H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information Systems – Evalua-
tion/methodology; I.2.6 [Artificial intelligence]: Learning
Keywords: Social signal processing; supervised learning

1. INTRODUCTION
Human face-to-face communication is a continuous process of ex-

changing and interpreting multimodal communicative signals [24].
For an robot to participate successfully in this context, it needs more
than just the physical skills to perform objective tasks in the world;
it also needs the appropriate social skills to understand and respond
to the multimodal social signals from its human partners (e.g., gaze,
facial expression, and language). The state of the art in input pro-
cessing areas such as computer vision or speech recognition is to
produce a continuous stream of noisy sensor data. In order for this
information to be useful for decision-making in an interactive sys-
tem, all of this continuous, noisy, single-channel information must

be combined into a discrete, cross-modal representation to allow the
decision-making components to select appropriate behaviour. This
is the task of social signal processing, a topic that has received in-
creasing attention in recent years—e.g., see [29] for a recent survey.

We consider a robot designed to share a dynamic, multi-party
social space, where not all of the participants require attention from
the robot at any given time. For such a robot, a crucial task is to
estimate attention seeking: that is, determining, for each person in
the scene, whether that person currently requires attention from the
system. Bohus and Horvitz [4, 5] pioneered the use of data-driven
methods in this context, by training models designed to predict user
engagement based on information from face tracking, pose estima-
tion, person tracking, group inference, along with recognised speech
and touch-screen events. A number of more recent systems have
also used machine learning to address this task. For example, Li
et al. [19] estimated the attention state of users of a robot in a public
space, combining person tracking, facial expression recognition,
and speaking recognition. Castellano et al. [6] trained a range of
engagement classifiers on labelled data extracted from the logs of
children interacting with a chess-playing robot. McColl and Nejat
[22] automatically classified the social accessibility of people inter-
acting with their robot based on their body pose, while MacHardy
et al. [21] classified the engagement states of audience members for
an online lecture based on information from facial feature detectors.

Like the above systems, we also take a data-driven approach to
this task, making use of the available data in two distinct ways:
(1) defining a hand-coded classifier based on rules derived from
the observation of natural human behaviour in real bars, and (2)
using an annotated corpus of human-robot interactions to train a
range of supervised learning classifiers. In a previous study, we
compared the classifiers through cross-validation on the training
corpus, and also compared the top-performing trained classifier with
the rule-based classifier in the context of a user evaluation of the
entire system. However, because the ground-truth attention-seeking
behaviour of the users in that study is not available, the practical
implications are difficult to interpret. In this paper, we therefore test
the performance of all of the classifiers (rule-based and trained) on
a newly-recorded, fully annotated test corpus. We also examine the
impact of incorporating temporal features into the classifier state.

2. CLASSIFYING CUSTOMER ATTENTION
FOR A ROBOT BARTENDER

This work takes place in the context of the socially aware hu-
manoid robot bartender shown in Figure 1. The hardware for the
robot bartender consists of two manipulator arms with grippers,
mounted to resemble human arms, along with an animatronic talk-
ing head capable of producing facial expressions, rigid head motion,
and lip-synchronised synthesised speech; full details of the software



A customer attracts the bartender’s attention
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer attracts the bartender’s attention
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 1: A socially aware robot bartender

architecture and components of the system are presented in [9]. The
bartender supports interactions similar to the one shown in Figure 1,
in which two customers enter the bar area and each attempt to order
a drink from the bartender. Note that when the second customer
attempts to attract the bartender’s attention while the bartender is
in the process of serving the first customer, the bartender reacts by
telling the second customer to wait, finishing the transaction with
the first customer, and only then serving the second customer. This
socially appropriate behaviour is based on the observation of real
bartenders interacting with customers in a natural context [20].

In the context of the above bartending scenario, the main role of
social signal processing is to estimate attention seeking: determining,
for each customer in the scene, whether that customer currently
requires attention from the system. This information is critical
for implementing the socially appropriate behaviour in the sample
interaction. User attention is estimated based on the low-level sensor
data published on two continuous input channels. The computer
vision system [3, 25] tracks the location, facial expressions, gaze
behaviour, and body language of all people in the scene in real time,
using a set of visual sensors including two calibrated stereo cameras
and a Microsoft Kinect [23] depth sensor. The data from the vision
system is published as frame-by-frame updates multiple times a
second. The other primary input modality in the system is linguistic
[26], combining a speech recogniser with a natural-language parser
to create symbolic representations of the speech from all users. For
speech recognition, we use the Microsoft Speech API together with
the directional microphone array of a second Kinect; incremental
hypotheses are published constantly, and recognised speech is parsed
using a grammar implemented in OpenCCG [31] to extract the
syntactic and semantic information.

Concretely, we consider the following low-level sensor features
for the task of classifying customer attention:

• The (x, y, z) coordinates of each customer’s head, left hand,
and right hand as reported by the vision system;

• The angle of each customer’s torso in degrees, where 0◦ indi-
cates that the customer is facing directly forwards; and

• An estimate of whether each customer is currently speaking,
derived from the estimated source angle of each speech hy-
pothesis along with the location information from vision.

CVR Classifies using regression: the target class is binarised,
and one regression model is built for each class value [12].

IB1 A nearest-neighbour classifier that uses normalised Euclidean
distance to find the closest training instance [2].

J48 Classifies instances using a pruned C4.5 decision tree [27].
JRip Implements the RIPPER propositional rule learner [8].
LibSVM Generates a Support Vector Machine using LIBSVM [7].
Logistic Multinomial logistic regression with a ridge estimator [18].
NaiveBayes A Naïve Bayes classifier using estimator classes [15].
ZeroR Baseline classifier; always predicts the most frequent value.

Figure 2: Classifiers considered

Classifier Accuracy AUC Precision Recall F

IB1 0.960 0.932 0.957 0.958 0.957

J48 0.924 0.919 0.925 0.925 0.925
JRip 0.911 0.868 0.913 0.914 0.913
CVR 0.921 0.960 0.911 0.912 0.912

Logistic 0.780 0.739 0.727 0.781 0.710
LibSVM 0.790 0.521 0.830 0.790 0.706

NaiveBayes 0.669 0.656 0.726 0.662 0.685
ZeroR 0.780 0.500 0.609 0.780 0.684
Rule 0.655 na 0.635 0.654 0.644

Table 1: Cross-validation results, sorted by F score (from [10])

Every time a new frame is published from the vision system, the
attention state of every customer in the scene is estimated using the
above sensor features, using two classification strategies. The first
strategy employed a simple rule derived from the observation of
customers in real bars [20]: a customer was defined to be seeking
attention exactly when (1) they were close to the bar, and (2) their
torso was turned towards the bartender. The second strategy used an
annotated corpus of human-robot interactions to train a range of off-
the-shelf supervised learning classifiers using the Weka data mining
toolkit [13]. To cover a variety of learning strategies, we used the
representative classifiers from the Weka primer [1]; the details are
given in Figure 2. Note that for all of our experiments, we treat
the classifiers as “black boxes” [28], using the default parameter
settings given by Weka and looking only at the classified output. We
discuss extensions to this approach at the end of the paper.

In a previous study we compared all of the classifiers through
10-fold cross-validation against the training corpus. The results of
this cross-validation study are reproduced in Table 1, where the
groupings in the table reflect differences among the F scores that
were significant at the p < 0.01 level on a paired T test based on
10 independent cross-validation runs. In a follow-up experiment,
the the best-performing trained classifier from the cross-validation
study—the IB1 (instance-based) classifier—was compared with the
rule-based classifier in the context of an interactive user evaluation
of the entire bartender system. The main finding was that the trained
classifier changed its estimate of the user’s attention state signif-
icantly more often than did the rule-based classifier; the trained
classifier also tended to detect attention-seeking somewhat more
quickly, although that tendency was not found to be significant. The
details of the cross-validation and user studies are presented in [10].

3. VALIDATING THE CLASSIFIERS
In the user evaluation summarised above, the ground truth about

the customers’ actual attention-seeking behaviour was not available.
All of the objective metrics used to compare the two classifiers were
therefore—necessarily—based solely on the assumption that all cus-
tomers followed the instructions that they were given: to attract the
attention of the bartender and order a drink (as in Figure 1). This



(a) Customer not seeking attention

(b) Customer seeking attention

Figure 3: Sample images from the test data

makes the results of the user study difficult to interpret, as it is impos-
sible to know which of the classifiers actually estimated customer
attention more accurately in practice; also, due to the study design,
there would have been very few true negative examples. We there-
fore carried out a new evaluation of the attention classifiers, making
use of a newly-recorded test corpus addressing the weaknesses of
the previous study: namely, the attention-seeking behaviour of all
customers is fully annotated, and the data includes examples of
customers who were both seeking and not seeking attention.

The test data is based on six videos, each showing a single cus-
tomer in front of the bar, as in the sample images in Figure 3. Two
different customers were recorded: one who was involved in the
human-robot interactions making up the original training corpus,
and one who was not. The Elan annotation tool [32] was used to an-
notate the videos, using the same labels as the original training data:
the customer’s attention state was labelled as either NotSeekingAt-
tention (Figure 3a) or SeekingAttention (Figure 3b). The video
annotations were synchronised with the frame-by-frame informa-
tion produced by the JAMES vision system, and a corpus instance
was then created from the relevant data in each vision frame, using
the annotation for the relevant time stamp as the gold-standard label.
In total, the test corpus consisted of 361 instances: 233 labelled as
NotSeekingAttention, and 128 labelled as SeekingAttention.

We then trained each classifier on the full training corpus from the
previous study [10], and used each trained classifier to predict labels
for every instance in the test data. The results of this test are shown
in Table 2, sorted—as in Figure 4—by weighted average F score.
As shown by the groupings in the table, the results fell into three
broad categories: at the top, the hand-coded rule and the J28, CVR,
and NaiveBayes classifiers all had F scores well above the baseline
ZeroR classifier, which always chooses the highest-frequency label
(NotSeekingAttention); the LibSVM classifier exactly reproduced
the baseline ZeroR behaviour; while the JRip, Logistic, and IB1
classifiers all did worse than this baseline.

These results contrast strongly with the cross-validation results
from Table 1. Firstly, the overall numbers are much lower: while
the top performing classifiers from the previous study had scores
well above 0.9 on all measures, the top results in this study were
in the range of 0.6–0.7. Also, the relative ordering of the classi-

Classifier Accuracy AUC Precision Recall F

Rule 0.681 na 0.694 0.681 0.687
J48 0.648 0.583 0.661 0.648 0.653
CVR 0.598 0.576 0.612 0.598 0.604
NaiveBayes 0.571 0.528 0.638 0.571 0.578

LibSVM 0.645 0.500 0.417 0.645 0.506
ZeroR 0.645 0.500 0.417 0.645 0.506

JRip 0.421 0.350 0.557 0.421 0.432
Logistic 0.438 0.329 0.390 0.438 0.411
IB1 0.349 0.341 0.388 0.349 0.363

Table 2: Classifier performance on the test set, sorted by F score

NotSeekingAttention SeekingAttention
Classifier Prec Rec F Prec Rec F

Rule 0.678 0.966 0.796 0.724 0.164 0.268
J48 0.748 0.687 0.736 0.503 0.578 0.538
CVR 0.706 0.648 0.676 0.442 0.508 0.473
NaiveBayes 0.750 0.502 0.602 0.434 0.695 0.535
LibSVM 0.645 1.000 0.785 0.000 0.000 0.000
ZeroR 0.645 1.000 0.785 0.000 0.000 0.000
JRip 0.575 0.395 0.468 0.299 0.469 0.365
Logistic 0.556 0.644 0.596 0.088 0.063 0.073
IB1 0.495 0.395 0.439 0.194 0.266 0.224

Table 3: Per-class precision, recall, and F score

fiers is very different: while the IB1 and JRip classifiers did well
on cross-validation, they were both among the lowest-performing
classifiers on the test data. On the other hand, the NaiveBayes clas-
sifier and the hand-coded rule—which were both near the bottom
on the cross-validation study—both scored at or near the top on the
test data. Other classifiers such as J48 and CVR did well both in
cross-validation and on the test corpus.

To better understand the performance of the classifiers, we in-
spected the classifier output on each of the test-data videos. Figure 4
(at the end of the paper) shows the gold-standard annotation for two
of the test videos, along with the labels produced by each classi-
fier on those same videos. The light yellow regions correspond to
the frames labelled with the NotSeekingAttention class, while the
dark blue regions correspond to the SeekingAttention class. The fig-
ure clearly suggests differences among the classifiers: for example,
the hand-coded rule selected SeekingAttention very rarely; on the
other hand, the lowest-performing classifiers (JRip, Logistic, IB1)
selected SeekingAttention frequently, even in cases (as in Video 2)
where the customer never entered this state.

The results in Table 2 reflect weighted averages across both
classes. To investigate the above class-specific tendencies more
closely, we therefore also computed precision, recall, and F scores
separately on the SeekingAttention and NotSeekingAttention classes;
these results are presented in Table 3. In summary, most of the
classifiers had higher precision/recall scores on the NotSeekingAt-
tention class than on the SeekingAttention class, possibly reflecting
the fact that this class was the larger in both the training and the test
data. The performance on the SeekingAttention class varied greatly:
ZeroR and LibSVM never selected this class at all; the hand-coded
rule and the Logistic and IB1 classifiers had very low recall; while
the other classifiers did a much better job at detecting this state.

4. ADDING TEMPORAL CONTEXT
In both the original cross-validation study and in the experiment

described above, the input to the classifier consisted only of the
sensor data at a given instant, without taking into account any of



the temporal context provided by the interaction. However, real
customers switch their attention-seeking state relatively infrequently,
so classifying each input frame independently tends to overestimate

Classifier Switches

Rule 4.7
J48 10.5
CVR 8.8
NaiveBayes 5.8
LibSVM 0.0
ZeroR 0.0
JRip 11.3
Logistic 5.3
IB1 9.3

Gold standard 2.0

Table 4: Stability

the number of attention changes.
This tendency can be seen in the
sample output in Figure 4, where
even the best-performing classi-
fiers changed their estimate much
more frequently than the gold
standard. Table 4 shows the mean
number of attention switches per
test video produced by each clas-
sifier; with the exception of the
two classifiers which always se-
lect NotSeekingAttention, all of
the numbers are well above the
gold-standard value of 2.0. Note
that on the previous user study,
stability was the main significant difference between the perfor-
mance of the hand-coded classifier and the trained IB1 classifier
[10]: the hand-coded rule changed its estimate an average of 12.0
times per interaction, while the value for the IB1 classifier was 17.6.

If an attention classifier—even one with high overall accuracy—
changes its estimate too frequently, the job of the system’s inter-
action manager is made more difficult, in that responding to every
change in estimated state is likely to produce undesirable behaviour.
In an alternative, unsupervised, POMDP-based approach to interac-
tion management, this issue is addressed by making the POMDP
“sticky”; that is, biasing it towards self-transitions [30]. In an effort
to improve the stability of the trained classifiers used here, we test
two methods of incorporating information from previous frames
into the state. We first try adding sensor data from previous frames
to the state; we then try adding the classification of previous frames.
We do not consider the ZeroR or LibSVM classifiers in this section,
as their performance is not affected by either of the manipulations
considered here: in all cases, these classifiers still label all instances
in the test set as NotSeekingAttention.

4.1 Previous Sensor Data
The state used in the previous classification experiments included

only the sensor data from the current vision frame; we will call
this frame f0. To incorporate some temporal context, we modified
the state to add sensor data from the following frames: the imme-
diately preceding frame ( f1), five frames in the past ( f5), and ten
frames in the past ( f10). To test if these new attributes could help
in classification, we first used Correlation-Based Feature Selection
(CBF) [14] to select the relevant state features; the result included
the full (x, y, z) face position and some of the hand coordinates from
f0, along with the face (x, y) position and the right hand x coordinate
from f1. Note that the attributes selected from f0 are essentially
the same as those selected from the original training data [10]; the
additional presence of features from f1 confirms that the addition of
temporal context has the potential to improve classifier performance.

We next re-ran the cross-validation study with the revised states,
and also tested the newly trained classifiers against the test data.
Table 5 shows the weighted average F score of all trained classi-
fiers from this study, both from 10-fold cross-validation against the
training corpus and when run against the test corpus. The overall
cross-validation results were similar to those on the original training
corpus (Table 1). On the test set, the J48 classifier still had the best
overall performance, with a similar F score; the performance of the
IB1 classifier improved dramatically, with an F score going from
0.363 to 0.609; while the other classifiers all saw reduced perfor-

Classifier F (cv) F (test) Switches

J48 0.931 0.614 9.0
CVR 0.926 0.430 7.5
NaiveBayes 0.550 0.485 4.7
JRip 0.921 0.382 9.3
Logistic 0.753 0.418 7.8
IB1 0.878 0.609 11.7

Table 5: Classifier performance with past sensor data

Classifier F (cv) F (test, gold) F (test, est) Switches

J48 0.975 0.842 0.506 0.0
CVR 0.969 0.864 0.639 12.5
NaiveBayes 0.959 0.845 0.363 1.5
JRip 0.973 0.855 0.506 0.0
Logistic 0.973 0.888 0.542 1.0
IB1 0.980 0.773 0.600 0.7

Table 6: Classifier performance with past classification data

mance on the test set. The final column of Table 5 shows the mean
number of times that each classifier changed its estimate per video;
these numbers are broadly similar to those in Table 4.

Figure 5 shows the output of all of the newly trained classifiers on
the same two sample videos as in Figure 4. Clearly, the addition of
the temporal features has caused nearly all of the trained classifiers
to select SeekingAttention much more frequently than in the original
study, even on frames where the customer was not seeking attention,
resulting in decreased overall performance for most classifiers; how-
ever, the increased amount of context appears to have allowed the
IB1 (instance-based) classifier to improve its classification accuracy.

4.2 Previous Classifications
In the preceding section, we investigated the impact of including

sensor data from previous frames in the state. Here, we consider
another method of modifying the state: including the previous clas-
sifier outputs into the state. We first modified the training data in
the same way as above, this time by adding the attention label from
the f1, f5, and f10 to the state. As expected, the classification for f0

depends very strongly on the immediate history; in fact, when we
carried out feature selection using CBF on the training data, only
the attention label from f1 was chosen as informative.

The results of this study are presented in Table 6. The first col-
umn indicates the F score from 10-fold cross-validation against the
revised training corpus; as expected, given the strong predictive
power of the previous state, these values are all very high. The
next column indicates the F score on the test data where the state is
expanded to include the preceding gold-standard attention labels;
again, as would be expected, these values are generally quite high.
However, using the gold-standard labels in this way is an unreal-
istic test. A better practical assessment of the classifiers is in the
next column, which shows the F score when the context includes
the previous estimated labels—and here the performance is very
different. As shown by the sample outputs in Figure 6, the JRip and
J48 classifiers choose NotSeekingAttention for every frame in the
test data, while the Logistic classifier nearly always chose this label;
on the other hand, the IB1 classifier labelled nearly every frame as
SeekingAttention. While the NaiveBayes classifier produced a better
spread of estimates, its overall performance was also low; only the
CVR classifier had performance close to that found in the preceding
studies. The final column of the table shows the number of switches
for each classifier; these numbers are generally low, but—due to the
above factors—this does not correspond to high-quality output.



5. SUMMARY AND FUTURE WORK
We have carried out a series of experiments testing methods for

estimating the attention-seeking state of customers for a robot bar-
tender, based on the low-level sensor information. In a previous
study, the classifiers were assessed through cross-validation and in
the context of a whole-system study; however, because the ground
truth data was not available, the previous user study did not give
a full picture of the practical usefulness of the classifiers. Here,
we carried out a targeted evaluation using newly recorded, fully
annotated test data, and found that the relative performance of the
classifiers was different. In the previous study, the instance-based
IB1 classifier had the highest performance, but on this study, we
found that the J48 decision-tree classifier gave the best estimate of
the users’ attention state. In all cases, even the top-performing clas-
sifiers changed their estimate of the customers’ attention state much
too frequently; in an attempt to address this, we experimented with
adding temporal features to the state, but this generally tended to
decrease the classification performance without improving stability.

In this study, as in the previous one, we have made a deliberate
choice to treat all of the supervised classifiers as black boxes, using
the default parameter settings provided by Weka. This is a similar
approach to that taken, for example, by Koller and Petrick [16], who
compared the off-the-shelf performance of a number of AI planners
when applied to tasks derived from natural language generation.
However, it is certain that the relative and absolute performance
would be significantly affected by appropriate parameter tuning [17],
and in future we will explore the space of parameters more fully.
We will also investigate other methods for improving the stability
of the classification, either by incorporating other features into the
classifier state or by implementing methods similar to the “sticky”
infinite POMDP [30]. It might also be that improved stability would
be achieved by using temporal models such as Hidden Markov
Models or Conditional Random Fields, and we will also investigate
these approaches. The annotated training and test data will also soon
be made publicly available for any other researchers who want to
explore classification techniques. Finally, we will explore methods
for making improved use of the classifier output in the context of
end-to-end interactions with the robot bartender. Here, an advantage
of the J48 classifier over the IB1 classifier is that the former is
able to estimate the confidence of its classifications, which can be
incorporated into the new state representation which retains the
uncertainty coming from the underlying input sensors [11].
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(a) Video 1

(b) Video 2

Figure 4: Gold-standard annotations and classifier predictions for two sample videos

(a) Video 1

(b) Video 2

Figure 5: Gold-standard annotations and classifier predictions for the sample videos, incorporating previous sensor data

(a) Video 1

(b) Video 2

Figure 6: Gold-standard annotations and classifier predictions for the sample videos, incorporating previous classifications
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