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ABSTRACT
Advanced information systems captivate people’s attention.
Examples of such systems include advanced driver support
cars and communication robots capable of interacting with
humans. Modeling how people search visual information is
indispensable for designing these kinds of systems. In this
paper, we focus on human visual attention, which is closely
related to visual search behavior. We propose a computa-
tional model to estimate a person’s visual attention while
carrying out a visual target search task. Existing models
estimate visual attention using the mean difference between
the visual feature distribution of a target stimulus and other
stimuli. This model is limited, however, in that for difficult
search tasks, a better performance is not often achieved. For
such tasks, the linear separability effect of a visual feature
distribution must be considered. We incorporate this effect
into our proposed model that estimates target-specific vi-
sual attention using the Fisher’s variance ratio[1] between
a local visual feature distribution of a target stimulus and
each of the other stimuli. We confirm the effectiveness of our
computational model using a visual search experiment.
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1. INTRODUCTION
Many researchers have focused on gaze to develop advanced
information systems that interact with humans. To gaze at
something implies human cognitive states such as interest
and intent. For example, a human-friendly robot not only
requires verbal communication, but also requires nonverbal
communication such as eye contact and mutual gaze[13]. In
order to establish natural joint attention between a person
and a robot, the robot should estimate when and on what
the person will focus[8]. The advanced driving support sys-
tem of a vehicle should also be able estimate a driver’s visual
attention. This system helps the driver recognize driving
cues such as signboards and guide plates on the roads. The
visibility of these objects differs in varying conditions such as
daytime/nighttime, roads with/without obstacles, and ur-
ban/rural roads[11]. The support system is effective if it
can estimate the visibility according to their environments
and make the driver aware of their locations. Human visual
attention is important for designing rich human-computer
interaction.

Visual attention is a built-in mechanism of the human vi-
sual system and is used to quickly focus one’s attention on a
region in a visual scene that is most likely to contain objects
of interest. Visual attention is classified as either bottom-
up or top-down. When only visual stimuli activate visual
attention in a scene, this is known as bottom-up process-
ing. In contrast, when a person views a scene with inten-
tion, such as searching for a target or driving a car, they
shift their visual attention in a top-down manner. In re-
cent years, simulating visual attention and computing vi-
sual saliency have attracted much attention in the field of
robotics and computer vision. Itti et al.[4] proposed a rep-
resentative computational model of visual saliency. They
incorporated a bottom-up computational process into their
proposed saliency map model based on the feature integra-
tion theory of Treisman and Gelade[12] and multi-resolution
structure of Koch and Ullman[6]. Other bottom-up visual
attention models, which are the derivatives of Itti’s model,
have been developed by other researchers. On the other
hand, computational models of top-down visual attention
are not well studied. However, many psychophysical find-



Figure 1: Computational model of top-down visual attention
that modulates weights of visual features[5].

ings and conceptual models on task-oriented visual atten-
tion have been reported. Our research focuses on estimating
a top-down visual attention activated during visual search
tasks. In this paper, we define this attention as target-
specific visual attention. We propose a novel computational
model based on psychophysical findings of visual search.

2. RELATED WORKS
In this section, we discuss works related to top-down vi-
sual attention in search tasks. Figure 1 outlines a typical
computational process that modulates the weights of visual
features[5]. Some researchers have proposed the computa-
tional models based on this weight modulation process. For
visual search tasks, it is important to consider the relation-
ship between targets and distractors. Navalpakkam et al.[9]
improved Itti’s original saliency map model[4] by using the
maximum signal-to-noise ratio (SNR) as an objective func-
tion for weight modulation. The signal-to-noise ratio is the
ratio between target salience and distractor salience and is
effective for controlling the weight of each visual feature.
The calculation of SNR depends on the average feature dis-
tribution of the target and distractors. Frintrop et al. pro-
posed a weight modulation model that directly applies SNRs
computed from training image features to the modulation
weights[2]. A top-down saliency map is generated by taking
the difference between the excitation and inhibition maps.
The excitation map consists of the weighted responses of
feature channels with SNR > 1, whereas the inhibition map
consists of the responses with SNR < 1. A target-specific vi-
sual attention map is produced by combining the top-down
and bottom-up saliency maps. As a result, Frintrop et al.
developed a highly accurate, top-down, visual attention sys-
tem named VOCUS to search for specific targets.

These weighted modulation models, however, have the fol-
lowing problems:

• Because the optimal weight of each visual features is
extracted from a finite set of training images, they are
prone to over-fitting to the learned dataset.

Figure 2: Example of a pair of images used for the visual
search task.

• A relationship between the target and each distractor
cannot be modulated because a weight is calculated
between each visual feature of the target and all other
stimuli.

• Because these methods employ the mean or the ex-
pected value of each visual feature distribution ex-
tracted from the object regions to compute the weight,
so they only work well for uniform distributions.

Our goal is to resolve each of these issues. First, we cal-
culate weights from visual features extracted from only a
pair of images in a visual search task. These images con-
sist of a target image and a search image that includes the
target object and other distractor objects. Second, we use
spotlighting to perform the conjunction search of existing
feature integration theory[12], and calculate spatially local-
ized weights to modulate the relationship between the target
and each object. Third, we calculate the weights according
to the distributions of visual features extracted from each
object region. In particular, we pay special attention to the
linear separability effect on visual search tasks to the calcu-
lation of these weights. Hodsoll et al.[3] found that people
can easily find a target which is linearly separable from dis-
tractors in feature space.

In this paper, we propose a top-down model for computing
target-specific visual attention by considering the dispersion
of visual features of each object.

3. VISUAL SEARCH TASK
Conventional psychophysical studies on visual search employ
simple geometric images. We use natural images with more
complicated textures as shown in Figure 2. We design a
visual search task as follows: (1) An experimenter presents
a target image to an experimental participant at the center
of the display field for several seconds (Figure 2(a)). (2)
The experimenter presents a panel image where the target
and distractor objects are aligned (Figure 2(b)) and asks
the participant to search for the target. Note that the target
image is the same as the target included in the panel image.

4. PROPOSED METHOD
In this section, we describe our model for computing target-
specific visual attention. We extend the original saliency
map model proposed by Itti et al. to this top-down model.
Figure 3 shows the process flow of our model. As mentioned
in Section 2, we consider the linear separability between the
visual feature distributions of each object in the panel image



Figure 3: Process flow of our proposed model.

Figure 4: Segmented panel image.

and the target. To compute the weights based on linear
separability, we first segment the panel image into equal
subregions as shown in Figure 4. Each subregion contains
an object. We then calculate the weights for each subregion.
We refer to this region as the tile region for the remainder
of this paper. Weights are computed using the following
two processes: (1) extraction of early visual features from
the target image and entire panel image and (2) modulation
of weights for each tile region. For the latter process, we
utilize the linear separability effect as described by Hodsoll
et al.[4].

4.1 Extraction of early features from panel im-
age and target image

Similar to Itti et al.[4], we employ early visual features to
compute the visual attention map. First, nine images with
varying scales (c ∈ 0 . . . 8) are created using Gaussian pyra-
mids that progressively filter out higher frequencies and sub-
sample the images. Red (r), green (g), and blue (b) channels
are extracted from the images. An intensity image (I) and
four broadly-tuned color images (R, G, B, and Y ) are cre-
ated according to

I(c) = (r(c) + g(c) + b(c))/3, (1)

R(c) = r(c)− (g(c) + b(c))/2, (2)

G(c) = g(c)− (r(c) + b(c))/2, (3)

(a)linearly separable (b)nonlinearly separable

Figure 5: Examples of linearly or nonlinearly separable tar-
gets[3].

B(c) = b(c)− (r(c) + g(c))/2, (4)

Y (c) = (r(c) + g(c))/2− |r(c)− g(c)|/2− b(c). (5)

Four local orientation images O(c, θ) (θ ∈ 0◦, 45◦, 90◦, 135◦)
are created from I using oriented Gabor pyramids as follows:

O(c, θ) = I(c) ∗ ϕ(θ), (6)

where ∗ means a convolution and ϕ means a Gabor filter.
Next, a set of feature maps are created in six patterns of
center-surround differences. The across-scale difference be-
tween two maps, denoted by “⊖” below, is obtained by inter-
polating the finer scale and point-by-point subtraction. The
center-surround differences between a “center” fine scale
c (∈ 2, 3, 4) and a “surround” coarser scale s (= c + δ (δ ∈
3, 4)) yield the feature maps as follows:

I(c, s) = |I(c)⊖ I(s)|, (7)

RG(c, s) = |(R(c)−G(c))⊖ (G(s)−R(s))|, (8)

BY (c, s) = |(B(c)− Y (c))⊖ (Y (s)−B(s))|, (9)

O(c, s, θ) = |O(c, θ)⊖O(s, θ)|. (10)

4.2 Modulation of weights based on linear sep-
arability between feature distributions

We modulate the weight of each tile region on each feature
map based on linear separability. We first extract the distri-
butions of visual features on the feature maps, and then, we
compute variance ratios between the distribution of each ob-
ject in the panel image and the target image using principles
of linear separability.

4.2.1 Psychophysical findings on visual search
Hodsoll et al. suggested that the difficulty of visual search
is dependent on whether or not a target is linearly separa-
ble from other objects within a particular feature space. If
the feature distribution of the target is linearly separable
from that of the distractors (as shown in Figure 5(a)) , it
is easy to locate the target[12]. In contrast, if the feature
distribution of the target and the distractors is nonlinearly
separable (as shown in Figure 5(b)), a serial search is re-
quired to locate the target by shifting one’s spotlight of at-
tention in the conjunction search manner. In the case of
Figure 5(a), the color feature is important unlike in Figure
5(b). The linear separability effect exists for other feature
spaces in addition to the color space. In accordance to oth-
ers’ findings, we consider that linear separability modulates



Figure 6: Feature maps for calculation linear separability.

target-specific visual attention. We assume that the ratio of
between-class variance to within-class variance is fit to sim-
ulate the linear separability effect. The ratio is a measure
of linear separability[1].

4.2.2 Linear separability of feature distributions
We employ Jσ the Fisher’s variance ratio, (11), of between-
class variance, (12), to within-class variance, (13), as a mea-
sure of the linear separability between the visual feature dis-
tribution of each object in the panel image and the target.
These variances are defined as follows:

Jσ =
σ2

B

σ2
W

, (11)

σ2
B =

1

n

c∑
i=1

ni(mi −m)2, (12)

σ2
W =

1

n

c∑
i=1

∑
x∈χi

(x−mi)
2, (13)

where x is the feature for each pixel within an object region
χi of the feature map, mi is the centroid of the feature distri-
bution, and m is the centroid of mi. We apply each feature
distribution computed by equations (7)− (10) excluding the
calculation of absolute value to x because the sign of each
feature space is important for measuring the separability of
the distributions. Figure 6 shows the feature maps. The
upper part of Figure 6 is an example of feature maps com-
puted from a panel image. The bottom part of Figure 6 is
an example of feature maps computed from a target image.
The seven feature maps created are as follows: one intensity
map, two color maps (RG, BY ), and four orientation maps
(0◦, 45◦, 90◦, 135◦).

Figure 7: Calculation of weights.

Figure 8: Target-specific visual attention map.

4.2.3 Weight modulation of feature maps
We modulate the weights of feature maps within each tile
region based on the variance ratio. Figure 7 shows an exam-
ple of calculating weights within a tile region on the feature
map. We calculate the variance ratio between the feature
distribution within an object region on the panel image and
within the object region on the target image. Note that each
object region is circled in red as shown in Figure 7. Although
the target image had precisely the same appearance as an
object in the panel image, they generated different feature
maps owing to the center-surround computation using the
Gaussian pyramid. Hence, linear separability between the
target image and the object image is nonzero. The variance
ratio is calculated for each of the seven feature maps. If the
variance ratio is low, the focused object in the panel image is
similar to the target on the feature map, and hence, a higher
weight should be given to the feature map. If the variance
ratio is high, the focused object in the panel image is not
similar to the target on the feature map. In this case, the
feature map should be given a lower weight. To accomplish
this, we apply the reciprocal of the variance ratio to the
weight that is multiplied by the entire feature map within a
given tile region, including the object in focus.

4.3 Feature integration and normalization
We integrate the seven feature maps into an activation map
using the same process as saliency map computation[4]. First,
the seven feature maps are normalized with respect to each
modality and integrated into three conspicuity maps of in-
tensity, color, and orientation. Then, the conspicuity maps
are normalized and integrated into the target-specific visual
attention map. The local maximum of the attention map is
regarded as the most attracted location of the target search
task. Figure 8(a) is a panel image, and the pink flower which
is surrounded by a yellow rectangle is a target object. Fig-
ure 8(b) is the target-specific visual attention map created



from the panel image. It shows that the other pink flower
surrounded by a red rectangle is activated as with the target
unlike other red flowers on the map.

5. EXPERIMENT AND RESULT
5.1 Data set
We employed the MSRA Salient Object Database[7] that
includes 1000 images and their binary mask images. We se-
lected 25 images from the dataset in a random manner to
create each panel image and placed the object images ex-
tracted using their mask images in a 5 × 5 grid pattern on
a black background. The target image included an object
selected from them in a random manner. The size of the
panel image and the target image was 1920× 1200 pixels.
Ten participants (nine males and one female) with normal

vision, whose ages ranged between 22 and 24 years, par-
ticipated in our experiment. They were instructed first to
observe a target image for five seconds and then search for
the target in the paired panel image until they found it. We
treated this procedure as a trial of our visual search experi-
ment. We conducted one hundred trials for each participant
and recorded their eye movements using a Tobii X60 Eye
Tracker (data rate: 60 Hz, accuracy: typical 0.5 degrees)
during the trials.

5.2 Comparative models
We employed and reimplemented two conventional models
to evaluate our proposed model. One was the bottom-up
visual attention estimation model, i.e. saliency map model,
proposed by Ittiet al.[4]. The other was the target-specific
visual attention model proposed by Frintrop et al.[2]. In
this paper, we use the same visual feature set used by the
saliency map model for Frintrop’s model and for our pro-
posed model. As mentioned in Section 2, Frintrop’s model
learns the optimum weight of each feature channel from
training images. We assumed that the limited dataset would
cause overtraining. Alternatively, to avoid learning, we cal-
culate the weights from a target image and the paired panel
image and apply them to the feature maps of the panel image
to estimate a top-down saliency map Std so that we obtain
the upper bound performance of Frintrop’s model. The top-
down saliency map is integrated with the bottom-up saliency
map Sbu to estimate a global target-specific visual attention
map SA. The contribution of each map is adjusted by a
top-down factor w ∈ [0 . . . 1]:

SA = (1− w) ∗ Sbu + w ∗ Std (0 ≤ w ≤ 1). (14)

For w = 0.5, bottom-up and top-down cues are evenly re-
garded, whereas for w = 1.0, only top-down cue is consid-
ered. We employ two target-specific visual attention maps
with w = 0.5 and w = 1.0 as the comparative models for
evaluating our approach.

5.3 Evaluation approach
To quantify how well our estimations match the partici-
pants’ actual eye positions, we use the normalized scanpath
saliency (NSS)[10], which is defined as the response value at
the current eye position x⃗human = (xhuman, yhuman) ∈ Z2 in
a visual attention map S that has been normalized to have
zero mean and unit standard deviation:

NSS =
1

σS
(S(xhuman, yhuman)− µS) (15)

Figure 9: Gazed areas considered the error range of eye
tracker and central fovea area.

Figure 10: The boxplots of average NSS. The lower edge of
the box is the lower quartile and the upper edge is the upper
quartile. The circle indicates the outlier.

where µS and σ2
S are the mean and variance of the visual at-

tention map. A larger NSS score means a better fit, whereas
a zero NSS score means that the model was no better than
chance at attractive location.
When we calculate NSS, we consider the error range of the

eye tracker (visual angle:1.0◦) and central fovea area (2.0◦).
We consider the total range (3.0◦) as a gazed area. Figure
9 shows an example of gazed areas. Each green point shows
the gazed position, which was recorded through a visual
search trial. Each yellow circle, whose center is the green
point, shows the gazed area. In this paper, we exploit the
average NSS within the circles to evaluate the models.

5.4 Experimental result
Figure 10 shows the average NSS across all visual search
tasks, i.e., 100 trials × ten participants. The score for our
proposed model was 0.804 ± 0.072, which was higher than
the other models (bottom-up model: 0.443±0.057, Frintrop
w = 0.5: 0.557±0.058, Frintrop w = 1.0: 0.573±0.059). The
average response value in false detection areas, i.e., ungazed
areas, for our visual attention map was 1.337±0.024, which
was lower than that for the other models (bottom-up model:
1.644 ± 0.011, Frintrop w = 0.5: 2.125 ± 0.019, Frintrop
w = 1.0: 2.136 ± 0.015). These results suggest that the vi-
sual attention map estimated by our proposed model was
broadly consistent with the actual focused area.
Figure 11 shows examples of experimental results obtained

from a particular participant. This figure shows that the
proposed model estimated top-down visual attention with
high accuracy. In the case of Figure 11, each mean NSS of



Figure 11: Examples of estimation results with higher NSS.

the model was 0.185 (bottom-up model), 1.520 (Frintrop,
w = 0.5), 1.432 (Frintrop, w = 1.0), and 2.392 (our pro-
posed model).
In situations where the saliency of a target object was low

and the saliency of other objects around the target were ad-
equately high, participants might focus their attention on
the target even if saliency of target is extremely low. This
phenomenon suggests a need to modulate the weights focus-
ing not only on local saliency features, but also on global
saliency features of the entire feature map. Further, partici-
pants might search for a target with their peripheral vision,
especially when the target was located near the center of the
panel image. In this case, an accurate estimate of top-down
visual attention may not be achieved. Thus, redesigning the
layout of objects on the panel image would be helpful to
alleviate this problem.

6. CONCLUSION
In this paper, we focused on the effect of linear separability
between the visual feature distribution of a target object
and each of other objects on the visual target search task
and proposed a computational model which estimates the
target-specific top-down visual attention. We confirmed the
effectiveness of our computational model.
In the future, we plan to verify our model with natural

images that contain complicated visual features. Further,
we propose to calculate weights focusing not only on local
saliency, but also on global saliency in consideration of the
spatial relationship between saliency of the focused object
and the neighboring objects.
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