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ABSTRACT
Current approaches to artificial attention are largely lim-
ited to the visual domain. Only some consider audition as a
source of information at the same time. Yet, attention is not
necessarily limited to a single modality or a mere agglomera-
tion of several modalities in human perception. Cross-modal
attention, and its manipulation by cross-modal cues, seems
to play a vital role in asymmetric interactions such as a
parent tutoring a child. We discuss previous efforts [23] to
reflect such perceptual processes with an artificial attention
system that considers signal-level synchrony between vision
and audition to guide visual attention. Results show that
the system is receptive to infant directed cues from parents.
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1. INTRODUCTION
Both infants and robots need to make sense of multi-modal
streams of information when someone wants to teach them
the meaning of word or how to do something. For instance,
the concept behind a word that comes as an auditory stimu-
lus needs to be associated to a visual stimulus or propriocep-
tive sensation. Both parts are first of all situated within an
entirely unsegmented and continuous stream of information.
Making sense of a novel concept therefore requires to identify
and segment the relevant stimuli from each modality among
irrelevant information, and to properly relate them to each
other. In contrast to current robotics system, infants utilize
very specific, rich, and multi-level support from their par-
ents when trying to solve this tremendously difficult task.
When parents teach their children about the meaning of
word or how to do something, they largely modify their be-
havior compared to adult-adult interactions and establish a
highly interactive and multi-modal teaching-process, rather
than teaching in uni-directional and uni-modal ways. For in-
stance, recent approaches to word learning take advantage

of interactive processes between participants [34]. Gogate,
Bahrick and Watson [8] took an experimental approach and
investigated how mothers interact with their children when
they try to teach them a new word. The authors found
out that when mothers were asked to teach a new word for
the objects or actions, they moved the objects in temporal
synchrony with the new label, hence establishing a cross-
modal relation beyond the content of each isolated modal-
ity. Other modifications of parental teaching compared to
adult-directed communication include modifications each of
prosody in speech [7] and demonstrated motion [3, 18], both
of which are hypothesized to highlight relevant information
and allow to “package” [29] them together. Besides par-
ents emitting such cues, it has been shown that infants are
well receptive to them. The power of cross-modal binding
has been shown for newborn and young infants as auditory
stimulation has been found to facilitate the visual attention
[17, 14]. Infants as young as two months are sensitive to
voice-lip synchrony during speech [16]. Furthermore, recent
studies by Zukow-Goldring and colleagues [33] using eye-
tracking technology with video confirms that 9 to 15 months
old infants prefer looking at objects that are presented in a
synchronous word-object condition. Consequently, experi-
ments [9] revealed that 7 month-olds indeed benefit from
synchronous stimuli when learning to map a syllable onto
an object. The “Intersensory Redundancy Hypothesis” [2]
attempts to explain how synchrony of signals can guide in-
fants’ selective attention and contribute to the learning pro-
cess. Signals from different modalities reinforce each other
on the basis of amodal properties like synchrony which pro-
motes earlier processing. They thus attract the attention
of perceivers and become foreground in contrast to other
properties to become background [2]. The infant’s initial
sensitivity to amodal information such as synchrony – as it
has been shown in the study by Gogate and her colleague
[8] – provides an economical way of guiding perceptual pro-
cessing to focus on meaningful, unitary events [2]. Hence,
infants’ learning is promoted in a cycle of both uni-modal
and cross-modal parental tutoring cues, and infants’ atten-
tional mechanisms well tuned to these cues.

How can robotics systems benefit from such findings? The
principle idea is to let the robot take the place of the infant,
and let it benefit from the cues sent by human through inter-
action [31], taking the perspective of developmental robotics
[1]. Therefore we have to consider the symbiotic way of inter-
action between infant and caregiver and replicate the crucial
mechanisms on the infant-side in robotics systems [21]. Sev-



Figure 1: Schematic overview of synchrony detec-
tion: a video feature is per pixel compared to a au-
dio feature for a short window in time. Mutual in-
formation is computed based on a linear correlation
coefficient, yielding a topographic map of synchrony.

eral studies have already pointed out that infant-directed
cues also occur when adults teach child-like robots [30, 28].
Here, we discuss previous efforts [23] to make artificial sys-
tems receptive to such cues, focusing on the exploitation
of synchrony between visual and auditory presentations in
parental teaching. The main idea is to try to detect syn-
chrony between visual and auditory stimuli at an early level
and let it guide visual attention, e.g. preferably attending
to synchronous stimuli like an object moved simultaneously
with its verbal label. Computational approaches to visual
attention have naturally been made mostly based on visual
information only, such as in traditional saliency models [13].
While it is increasingly realized that social interaction be-
tween robots and humans requires a more multimodal ac-
count [32], most approaches limit themselves to a mere ag-
glomeration of modalities (multi-modal) instead of exploit-
ing the very cross-modal relation between them. For in-
stance, each modality is first processed to obtain uni-modal
attention maps before results are merged into a combined
map [24, 26, 25]. In contrast, we seek to exploit the cross-
modal relation between visual and auditory information in
caregivers’ teaching at the earliest possible, i.e. signal, level
and utilize it for visual attention right away. In the follow-
ing we will briefly outline our computational account [23]
to synchrony detection for attention. Results [23] show that
our model is indeed receptive to cues in parent-child interac-
tions in which more synchrony is found than in adult-adult
interactions. Thereby the model often points out relevant
locations in the visual field in situations were pure visual
saliency fails. We finally discuss further (application) per-
spectives and first successful applications.

2. SYNCHRONY DETECTION
In order to guide visual attention to stimuli that expose
high audiovisual synchrony, we consider a stream of video
data accompanied by audio. Our method is based on an
algorithm proposed by Hershey and Movellan [11]. The al-
gorithm detects temporal correlations (synchrony) between
visual features and auditory features. Therefore each image-
location (i.e. pixel) is treated separately. The statistical
analysis is restricted to a small window in time that is shifted
over the audio/video stream. Since each pixel yields inde-
pendent estimates of synchrony, the result is a topographic

map of synchrony. As the final synchrony estimate is a mu-
tual information measure, such maps are also referred to as
“mixelgram” (see Fig. 1). Like other approaches to signal-
level synchrony, the algorithm was originally developed for
statistical sound-source localization (see also [12, 4]). In
that scenario, it is assumed that physical sound-sources pro-
vide synchronous patterns across modalities. Stimuli that
provide synchrony but do not correspond to an immedi-
ate sound-source are considered as false positives or distur-
bances. However, our application context is broader since
we want to detect social cues that do not directly refer to
physical sound sources. For our purposes, the algorithm has
two important properties: Firstly, the algorithm contains no
assumptions about the kind of visual (e.g. faces) or audi-
tory stimuli. From the learning perspective this is important
since such specific patterns shall be result of, but not a pre-
requisite for, an overall learning process. Secondly, the al-
gorithm is fast enough to detect synchrony in real time with
reasonable video resolutions and sampling rates (in contrast,
e.g., to methods based on canonical correlation analysis [4]),
which permits usage in a closed interaction loop. The model
has already been compared to infants’ abilities in synchrony
detection by Prince et al. [20].

The basic mathematical assumption for the statistical anal-
ysis is that the values of visual and auditory features orig-
inate from a joint probabilistic process. This process is as-
sumed to be stationary and Gaussian for a short period of
time. We denote the set of n audio-features over time as
a(t) ∈ Rn and the set of m video-features for each pixel
v(x, y, t) ∈ Rm. For the synchrony detection, the parame-
ters means µ and (co-)variances Σ are estimated from the
video data {a(tk), v(x, y, tk)}k, where k∈{1, . . . , T} denotes
the index of a video frame and T the number of frames
in a video. For practical reasons we do not use a discrete
time window as in [11] but compute exponentially smoothed
estimates of µ(x, y, tk) and Σ(x, y, tk) which can be done ef-
ficiently in one step per frame. The data from a current
frame (a(tk), v(x, y, tk)) receives a constant weight α∈]0; 1[
and is recursively combined with the previous estimates of
mean and variance:

µ(x, y, tk) = α ·
(

a(tk)
v(x, y, tk)

)
+ (1− α) · µ(x, y, tk−1)

Σ(x, y, tk) =
1

1 + α

(
α ·
((

a(tk)
v(x, y, tk)

)
− µ(x, y, tk−1)

)2

+ Σ(x, y, tk−1)

)

The estimates of (co-)variances Σ(x, y, tk) are then used to
express the degree of synchrony between audio and video in
terms of mutual information I. Assuming a Gaussian dis-
tribution yields an immediate relation that, in case of each
only one audio and video feature, can be simply expressed
[11] in terms of a Pearson correlation coefficient ρ:

IA,V (x, y, tk) = −
1

2
log
(
1− ρ2(x, y, tk)

)
ρ(x, y, tk) =

σA,V (x, y, tk)√
σA(tk) · σV (x, y, tk)

Thereby σA,V , σA and σV are the now scalar estimates of
variances and the covariance of audio- and video- feature.

The overall result is one mutual information image (mix-
elgram) per frame. High values of mutual information are



Figure 2: Top left: RGB-frame from a test-video.
Top right: Mutual information. Background noise
and lighting changes accompanied by peaks in audio
can sometimes cause intensive correlation artifacts.
White color corresponds to a mutual information of
0.51 (ρ = ±0.8). Bottom left: Threshold on video
variance. Bottom right: Morphological erosion.

visualized with lighter gray scale values (see Fig. 2) and ex-
press a high degree of synchrony between audio and video.
In the original scenario of sound-source localization, high
mutual information reflects a possible sound-source at a cer-
tain image location. However, in our scenario we are less
interested in such physically causal correlation. Instead, we
rather try to investigate the role of synchrony for attention
in tutoring. Hence, it is assumed that the model is also
perceptive to synchrony induced by the tutoring process it-
self. Therefore, a mixelgram can directly be interpreted in
terms of attention so that image regions with high mutual
information receive the highest degree of attention.

Filtering. Pearson’s correlation and mutual information as
measures of interdependence between audio and video in-
dicate the significance of a relation between both modali-
ties. The significance of the signal itself is first of all not
taken into account. In fact, most pixels in an image are
usually static apart from noise, thus providing no signifi-
cant change over time. Nevertheless those pixels can cause
high correlation just by chance (see Fig. 2). We proposed a
two-stage filter process to exclude insignificant visual stimuli
and noise. The first stage excludes pixels without activity.
As measurement of activity we use the variance over time
on each pixel. If the variance on a pixel is below a specified
threshold TV , mutual information is set to zero. Figure 2
illustrates the effect: large areas of stationary background
are filtered out. Still, there is notable noise in regions that
must be considered to be active. This noise results in single,
outstanding pixels with high mutual information (Fig. 2,
bottom left). These single pixel distortions are effectively
handled by the second filter stage: a morphological erosion.
Each pixel value is replaced by the minimum value of its
direct neighborhood. Thereby, single outstanding pixels are
completely erased, while massive regions of mutual informa-
tion are retained (Fig. 2, bottom right).

3. EXPERIMENTS
The major goal of our experiments [23] was to investigate
synchrony in a social learning scenario in terms of child-
directed communication. It is important to note that the
data for our analysis encompasses a contingent interaction
since we analyzed parental behavior during a real situation
with their children. In this situation, they continuously
reacted and adapted to their child. The basic hypothesis
is that during a demonstration, parents provide additional
learning cues by synchrony. The hypothesis is tested by com-
paring the degree of audiovisual synchrony between adult-
and child-directed communication.

Materials and Procedure. We investigated 184 videos show-
ing 48 participants, teaching either their adult partner or
their child how to do one of four tasks (stacking cups, us-
ing toy blocks, ringing a bell, using a salt-shaker). The data
stems from the original video corpus [21, 18], which contains
videos of 66 parental couples interacting with their children.
The infants’ age ranged from 8 to 30 months. After exclud-
ing trials with disturbances such as interaction with the ex-
perimenter, 192 videos were selected for the analysis. They
were equally distributed over 4 tasks, each with 12 parental
couples in 4 runs. Eight further videos had to be excluded
due to missing or corrupted audio tracks or annotations,
yielding a final number of 184 videos available for analy-
sis. In the study, both parents interacted with their child
and with an adult. The first run was an adult-child inter-
action, in which one parent (randomly selected) and her or
his child sat across the table. The parent was instructed to
demonstrate the function of the objects to the child. Here,
the parent was free to teach either the word, the action, or
both (those two acts were in fact mostly inseparable in the
collected data). We asked to move the white tray and to
give the objects to the child only after the demonstration.
The child was attending to the demonstration and interact-
ing with the parent. In a following adult-adult interaction,
the same parent was asked to demonstrate the object to her
or his partner. In the third run, the second parent demon-
strated the objects to the child. In the fourth run, the same
parent demonstrated the objects to an experimenter.

Measurement and Features. In order to assess the overall
synchrony of a demonstration towards either adult or infant,
we first evaluated the average mutual information for each
point in time in a video. Thereby the averaging only took
place across pixels in a videoframe that were not excluded
by the variance threshold:

S(tk) =
1

|P(tk)|
∑

(x,y)∈P(tk)

I(x, y, tk)

P(tk) = {(x, y) : 0 < I(x, y, tk)}

Results were then averaged over time, and normalized against
a respective measurement in which the original audio track
was replaced by white noise.

S =
1

T

T∑
k=1

S(tk) Srel =
S

1
n

∑n
i=1 Snoise(i)

Values Srel > 1 indicate a higher degree of synchrony being
detected than expectable by chance (e.g. noise), and hence
a significant synchrony between speech and visual body or
object movement.
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Figure 3: Synchrony results for gradient-strength
as feature, α= 0.05 and Srel as measure. Synchrony
in each adult-adult video is plotted against the syn-
chrony in the corresponding adult-child video.

Median
Settings AC AA Significance level

int 0.1 3.48 2.96 0.005
int 0.05 3.86 3.09 0.001
int 0.02 2.73 2.57 –
grad 0.1 2.31 2.00 0.001
grad 0.05 2.68 2.32 0.001
grad 0.02 2.18 1.96 0.1

Table 1: Comparison between adult-directed and
child-directed communication for intensity images
and Sobel-based gradient strength as features and
different values of α. The median for AC-synchrony
is significantly higher than for AA in all settings.

As audio-feature, we used audio-energy (as i.a. used in [11,
15] or similarly RMS values in [20]). As video features,
we used image intensity (grayscale values) and gradient-
strength images alternatively, which were found [22] to pro-
vide the best discrimination between synchronous and asyn-
chronous stimuli. We tested both intensity and gradient-
strength images with three temporal smoothing factors α∈
{0.02, 0.05, 0.1}. The variance threshold was defensively cho-
sen and fixed at TV =5.0 for both features.

Results. The goal of this experiment is to compare syn-
chrony in adult- and child-directed communication. For
this purpose, each video showing an adult-adult (AA) inter-
action is compared to the corresponding adult-child (AC)
video. Figure 3 exemplary shows the synchrony results for
gradient-strength feature and α = 0.05. Each point in the
plots corresponds to a pair of an AA and AC video, where
the synchrony in the AA video is plotted on the x-axis and
the synchrony in the AC video on the y-axis. The first
observation is that all except for three videos gained syn-
chrony values above 1.0. That means that the video signals
gained higher mutual information with the original audio
track than with audio noise. Hence, a real synchrony could
be detected. For a direct comparison between AA and AC
conditions, the main diagonal (i.e. x = y) is shown in the
plot. A point above this diagonal indicates that more syn-

chrony is found in the child-directed interaction than in the
corresponding adult-directed situation. Indeed most points
(here 62 out of 92) lie above the diagonal. Both median
and mean show higher synchrony for the child-directed sit-
uation. For this parameter setting, the median synchrony is
2.32 for AA videos and 2.68 for AC videos. The significance
of this effect was tested with a two-tailed sign test. The sign
test between paired random variables (ai, bi)i=1..N thereby
tests the null hypothesis H0 : P (A < B) = P (A > B) = 0.5.
Here the null hypothesis is that synchrony in AC has the
same probability to be higher or lower than in the corre-
sponding AA situation. On the dataset presented here, this
null hypothesis can be rejected with high significance (error
probability p<0.001). The effect can be reproduced across
diverse parameter settings (see Table 1). With respect to the
different interaction tasks, the wooden brick scenario shows
a significant (p < 0.01) trend towards more synchrony in
child-directed communication. For all scenarios the median
of AC synchrony is higher than the AA median, indicating
that the effect is rather task-independent.

An additional observation in the results is that synchrony
in child-directed situations is positively correlated with the
synchrony in corresponding adult-directed situations. Due
to individual differences parents tend to produce high syn-
chrony in AA situations, when they also produce relatively
high synchrony in AC situation. We assessed this effect with
the Spearman rank correlation coefficient. Analogous to
Pearson’s correlation, it indicates positive correlation with
values between 0.0 and 1.0, but is more robust to outliers.
For the settings shown in Figure 3 Spearman’s correlation is
0.480. The effect shows to be significant w.r.t. the null hy-
pothesis that the variables are uncorrelated (p<0.01 with a
two-tailed t-test). Also this effect can be reproduced across
several parameter settings. Thereby a positive correlation is
also found within each task.

If parental teaching provides learning cues by means of syn-
chrony, it is important to understand what these cues actu-
ally indicate. Here we discuss some exemplary scenes with
respect to spatial aspects on mutual information in the video
sequences. Child-directed tutoring was already investigated
[18] w.r.t. the spatial distribution of visual saliency [13].
Thereby, a part of the same cup stacking demonstrations to-
wards infants was investigated as used in this work. It was
shown that different motion patterns in adult- and child-
directed communication caused higher saliency on demon-
strated objects in child-directed situations. A comparison
between attention via saliency and synchrony can generally
be done in two ways: first of all the entire saliency map
(or the mixelgram) can be interpreted in terms of covert
attention [19]. As the potential importance of each image
region is encoded in those maps, one can directly compare
e.g. face and hand of a subject w.r.t. their importance rel-
ative to each other. A more condensed view can be gained
in terms of overt attention [19]: each saliency map and each
mixelgram is reduced to a single attended position – a focus
of attention. For saliency maps this is simply the position
with the highest value. Thereby we basically used the same
saliency configuration as in [18], evaluating intensity, color,
orientation, difference images and optical flow by means of
Itti and Koch’s Saliency map model [13]. In contrast to [11]
and [20], we do not find this location within a mixelgram



Figure 4: Exemplary maximum positions of mutual
information (red) and saliency (green).

by means of a center of gravity since we are not interested
in a huge region of synchrony but in a region of high syn-
chrony – whatever size it has. Therefore we apply a 15x15
Gaussian filter to smooth each mixelgram and then detect
the position of maximum mutual information.

The analysis of two exemplary videos is shown in Figure 4.
The maxima of each saliency and mutual information during
parental speech in the child-directed condition are visual-
ized. The first video shows the demonstration of cup stack-
ing. Maximum mutual information is often found on a shown
object due a synchronized presentation, but also often on
mouth and head due to the inherent synchrony with speech
utterances. Obviously, the cups are no source of sound in
these situations, but provide synchrony due to the inter-
play of parents’ speech and motion. The highest saliency
is often found on the subject’s pullover sharply contrasting
the background, but also in the subject’s action space (in
the vicinity of the hands) due to salient movements. The
second video shows a demonstration of the wooden bricks.
The maximum mutual information is mostly found in the
action space, and – contrary to the first video – less often
on the face. However, the synchrony is, in some frames, dis-
tracted towards e.g. the infant’s head, moving into the cam-
era view. Also the saliency maxima are mainly restricted to
this action space, but not exclusively to the hands and ob-
jects as a maximum can for instance be found on the shirt’s
sticker. Taking both videos into account, a perfect detec-
tion of task-relevant locations can neither be expected from
synchrony or saliency, nor from any bottom-up attention

strategy. However, we can state that synchrony quite often
points toward those locations and is hardly vulnerable to
conspicuous modality-specific stimuli like textures or colors,
whereas saliency maps are by design.

4. DISCUSSION
Our experimental results [23] give a clear indication that
child-directed interaction indeed involves a higher synchro-
nization between gestures (or generally movement) and speech.
Though this effect was also described by Gogate et al., it is
remarkable and encouraging that it can be detected even
at signal level, and by means of a computational attention
system. It has been argued that cues from child-directed
communication help to guide attention towards important
parts of either the speech signal or the visual scene [3, 6, 8].
The shown spatial distributions and example frames suggest
that mutual information can indeed be used to find relevant
image locations. Gogate et al. found that object motion
is often used synchronously to a word label in multimodal
motherese. Though the correlation analysis is performed on
an entirely different level, this is consistent with the obser-
vation that high mutual information values can be found on
shown objects during parental speech.

So far we did not analyze the temporal characteristics of
synchrony. It was argued [5] that child-directed speech has
i.a. the function to arouse and guide the infant’s attention.
Whereas our study focuses on the guidance, it is also likely
that synchrony in multimodal motherese is used to arouse
the infant’s attention when the child is currently not at-
tending to the parent or the task. In that case, an increased
level of synchrony might be measurable. Both functions are
highly plausible in the context of the Intersensory Redun-
dancy Hypothesis [2] as young infants have been shown to
preferentially attend to synchronous stimuli.

Deploying such attention system based on cross-modal anal-
ysis already on signal level in an actual closed loop of hu-
man robot interaction seems a promising direction for future
studies. First studies already pointed out how to successfully
gather training data for object recognition [10] from human
tutoring recordings by selecting cross-modally synchronous
stimuli. However, the approach appears to be potentially
useful not only for robots, but also as assistive system for
humans with perceptual and attentional deficits, such as
Autistic-spectrum disorder (ASD) patients [27]. In conclu-
sion, we can say that audiovisual signal-level synchrony for
visual attention might contribute to enabling a symbiotic
interaction loop such as between infants and caregivers also
between humans and robots.
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