HRI-2014 Workshop on Attention Models in Robotics: Visual Systems for Better HRI

Attentional Top-down Regulations in a Situated Human-Robot Dialogue

Alberto Finzi

DIETI, Università degli Studi di Napoli "Federico II"

Riccardo Caccavale, Alberto Finzi, Lorenzo Lucignano, Silvia Rossi, Mariacarla Staffa

Bielefeld, 3 March 2014

Introduction

Multimodal interaction, Dialogue Manager, Attentional System

- Integrated framework for multimodal HRI regulated by an attentional system:
 - The interaction between humans and robots can be modeled as a multimodal dialogue flow, involving speech, gestures, gaze orientation, etc.
 - Attentional mechanisms can orient and focus the robotic perceptive, cognitive, executive processes during the interaction.
- Attentional System:
 - Executive attention and cognitive control [Posner 1975, Shallice 2000]
 - Bottom-up regulations (environment and internal stimuli)
 - Top-down regulations (structured tasks)
- Attentional System and Dialogue Manager integration:
 - The multimodal interaction policy is regulated and integrated by the Attentional System with contextual and task-related contents

Attentional Multimodal HRI

Attentional system and multimodal dialogue management

Integrated Framework for Attentional Multimodal HRI:

Multimodal Interaction Module

Architecture

- Multimodal interaction:
 - Single-channel information can be ambiguous;
 - Ambiguities are resolved in cascade in the upper layers of the system;
 - Each layer provides the next layer with a list of possible interpretations;
 - Late fusion approach.
- Classification of single modalities:
 - Gesture, speech, etc.
- Time Manager:
 - Synchronization (temporal windows)
- Action Classifier:
 - User action recognition
 - Contextual weight
- Location Classifier:
 - Target of the action
- Modifier Recognition:
 - Execution modality
- Frame Builder:
 - N-best list of hypothesis

An Extensible Architecture for Robust Multimodal Human-Robot Communication, S. Rossi, E. Leone, M. Fiore, A. Finzi and F. Cutugno, in Proceedings of IROS 2013

Gersture Recognition

Classification of single modalities

Gestures:

Features:

- 3D coordinates of the shoulder, elbow, and hand joints.
- 3D angles between the shoulder and the elbow.
- 3D angles between the elbow and hand.
- Open, closed, pointing.
- Palm hand w.r.t. camera (boolean)

Point At	Go there, Specify object
Come Here	Come Here, Follow me
Hand's palm up	Give me, Show me
Idle	Take a decision
Walking	Follow me, Do nothing
Hand's palm Stop	Stop, Slow down, No
Grasp	Pick, Take
Circle in the air	Look for something
Release	Drop item

Architecture

In Proceedings of 15° ACM International Conference on Multimodal Interaction - ICMI 2013

Interaction Models

Interaction Models for Dialogue Management

• The system is provided with a set of interaction models named "dialogue flows", which describe how the dialogue can develop

Interaction Models

- Interaction Models for Dialogue Management
 - The system is provided with a set of interaction models, named "dialogue flows", which describe how the dialogue can develop

- The Dialogue is represented by a Partially Observable Markov Decision Problem [Young10, Jurafsky00] extended to the multimodal case [Lucignano et al. 2013]
- POMDP state is a tuple

$$(\underbrace{s_{flow}}_{dialogue flow ID flow state ID last user's action}, \underbrace{a_u}_{dialogue flow ID})$$

POMDP Representation

- POMDP soved using approximation methods:
 - Point Based Value Iteration [Pineau et al. 2003], that approximates the value function only at a finite set of belief points
 - Augmented MDP, that performs the optimization in a summary space rather than in the original space [Roy et al. 2000]

Attentional System and Cognitive Control for HRI

Attentional System:

It regulates both reactive and deliberative processes taking into account the interaction with the user (multimodal interaction, safety, naturalness and effectiveness)

Behavior-based attention system

- Frequency-based model of attention:
 - The higher the attention the higher the resolution at which a process is monitored and controlled [Senders 1964, Posner et al. 1980].
- Behavior-based architecture:
 - Each behavior is endowed with an internal adaptive clock [Burattini,Rossi2008] that represents an attentional mechanism [Burattini et al.,2010].
- Internal Adaptive Clock:
 - Attentional monitoring strategies increase/decrease the clock frequency of each behavior depending on salient internal/external stimuli (e.g. human disposition in the environment).

Behavior-based attention system

- Frequency-based model of attention:
 - The higher the attention the higher the resolution at which a process is monitored and controlled [Senders 1964, Posner et al. 1980].
- Behavior-based architecture:
 - Each behavior is endowed with an internal adaptive clock [Burattini,Rossi2008] that represents an attentional mechanism [Burattini et al.,2010].
- Internal Adaptive Clock:
 - Attentional monitoring strategies increase/decrease the clock frequency of each behavior depending on salient internal/external stimuli (e.g. human disposition in the environment).

Bielefeld, 3 March, 2014

HRI-2014, Attention Models in Robotics

Attentional Executive System

Cognitive control and top-down regulations:

- Execution monitoring, goal-directed behavior orchestration
- Depending on the task/context/machine action (dialogue) it defines:
 - Behavior allocation;
 - Top-down attentional regulations.

Attentional Executive System

Attentional Executive System: Cognitive Control Cycle

- Long Term Memory (LTM):
 - Repertory of hierarchical tasks
- Working Memory (WM):
 - Current executive state
 - Tasks in the attentional focus
- Cognitive Control Cycle:

Bielefeld, 3 March, 2014

- Continuously updates the tasks hierarchy in the WM
- Hierarchical tasks can activate and drive a hierarchy of attentional behaviors
- Task-coherent behaviors are enhanced (high-frequency); inhibited otherwise

Attentional Executive System

Attentional Executive System: Cognitive Control Cycle

- Long Term Memory (LTM):
 - Repertory of hierarchical tasks
- Working Memory (WM):
 - Current executive state
 - Tasks in the attentional focus
- Cognitive Control Cycle:
 - Continuously updates the tasks hierarchy in the WM
 - Hierarchical tasks can activate and drive a hierarchy of attentional behaviors
 - Task-coherent behaviors are enhanced (high-frequency); inhibited otherwise

```
schema(alive,[
        [sonarStream,1,["TRUE"]],
        [engineStream, 1, ["TRUE"]],
        [blobStream, 1, ["TRUE"]],
        [inputStream,1,["TRUE"]],
        [requestStream,1,["TRUE"]]]).
schema(goto(X,Y),[
        [avoid,1,["TRUE"]],
        [gotoxy(X,Y),1,["TRUE"]]]).
schema(followColor(Color),[
        [avoid,1,["TRUE"]],
        [reachColor(Color),1,["TRUE"]]]).
schema(searchColor(X),[
        [avoid,1,[-X.near]].
        [wander,1,[-X.present]],
        [reachColor(X),1,[X.present]]]).
   Long Term Memory
```

Bielefeld, 3 March, 2014

Attentional Executive System: Cognitive Control Cycle

- Long Term Memory (LTM):
 - Repertory of hierarchical tasks
- Working Memory (WM):
 - Current executive state
 - Tasks in the attentional focus
- Cognitive Control Cycle:
 - Continuously updates the tasks hierarchy in the WM
 - Hierarchical tasks can activate and drive a hierarchy of attentional behaviors
 - Task-coherent behaviors are enhanced (high-frequency); inhibited otherwise

$$p_t^b = f(\sigma^b(t), \sigma^B(t), p_{t-1}^b)$$

$$releaser^b = releaser^b_{int} \cdot releaser^s$$

Bielefeld, 3 March, 2014

HRI-2014, Attention Models in Robotics

Attentional System, Dialogue Manager, and Multimodal Interaction

- Attentional System:
 - The dialogue manager is treated as a special interactive behavior
 - The dialogue policy is integrated and regulated by the attentional system that provides contextual and task-related contents

Attentional System and Dialogue Manager

Conflict resolution and policy integration

- Dialogue policy integration:
 - The dialogue policy regulates the interaction (communication, disambiguation, turn taking, etc.), but task and context/task-based data can be missed (e.g. gesture "take", which object?)
- Attentional system integration:
 - Ambiguities and decisional impasses:
 - context/task coherence affects decisions about actions and parameters that instantiate the dialogue policy.

Top-down attentional mechanisms in collaborative activities: simulated scenario

- Multimodal interaction, Dialogue Management, Attentional Modulation:
 - Simulated pick-carry-place scenario

Top-down attentional mechanisms in collaborative activities: simulated scenario

Multimodal interaction, Dialogue Management, Attentional Modulation:

- Simulated pick-carry-place scenario
- Preliminary tests (conflict resolution)

EXECUTION TIME							
Task Sequence	Time (min)	Task Sequence	Time (min)				
TakeRed - TakeGreen		TakeRed - TakeGreen - TakeYellow					
Red Green Give	4.5	Red Green Give Yellow Give	9.19				
Green Give Red Give	7.11	Green Give Red Give Yellow Give	8.19				
Green Give Red Give	8.04	Red Green Give Yellow Give	7.21				
Green Give Red Give	7.14	Yellow Give Green Give Red Give	9.08				
Red Green Give	3.53	Yellow Green Give Red Give	7.28				
Green Red Give	3.50	Red Green Give Yellow Give	6.41				
Red Green Give	4.19	Red Green Give Yellow Give	7.02				
Green Give Red Give	6.04	Red Green Give Yellow Give	7.05				
Red Green Give	4.48	Yellow Give Green Give Red Give	9.43				
Green Red Give	6.26	Red Green Give Yellow Give	8.48				
AVG	STD	AVG	STD				
5.48	1.64	7.93	1,07				

Execution time of generic take() in different situations

Top-down and bottom-up influences

EXECUTION TIME (min)							
Take	-Red	Take-	Green	Take-	Yellow		
avg	std	avg	std	avg	std		
3.99	0.28	1.48	0.36	2.04	0.27		

Execution time of a specific take()

Top-down attentional mechanisms in collaborative activities: real scenario

Multimodal interaction, Dialogue Management, Attentional Modulation:

Table scenario, object recognition, and tracking

- Multimodal:
- Dialogue Policy:
- Executive System:

Observed human action (command or action);

Machine action (command execution/initiative/explanation req.); Attentional set, task-based behavior allocation, conflict resolution.

Cognitive executive control for a collaborative robot

- Multimodal interaction, Dialogue Management, Attentional Modulation:
 - Table scenario, object recognition and tracking

Cognitive executive control for a collaborative robot

HRI-2014, Attention Models in Robotics

- Multimodal interaction, Dialogue Management, Attentional Modulation:
 - Coffee scenario, object recognition and tracking

Coffee Scenario

4 objects on a table (cup, coffee carafe, a sugar bowl, spoon). The human is to prepare the coffee by collecting these objects in a suitable order: first the cup, then the sugar or the carafe, finally the spoon

The human can either take an object or receive it from the robot. Depending on the human-action target a gesture can be interpreted as a command or as an action.

Period modulation profile associated with this sequence of robot (solid line) and human actions (dotted line).

Conclusion

Summary and on-going work

- Summary:
 - Attention and dialogue management:
 - The dialogue policy provides an interaction template which is instantiated and continuously adjusted by the attentional system with respect to the environmental and the operative context.
 - Attentional Executive System:
 - Structured tasks and reactive behaviors
 - Both bottom-up and top-down attentional modulations enable the system to execute structured tasks and solve decisional impasses
- On-going work:
 - Testing more complex interactive scenarios
 - Integration of visual attentional mechanisms
 - Integration of a deliberative layer