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Backgrounds

* Gaze based Human Computer Interaction

— A human-friendly robot
 Establish joint attention and mutual gaze with humans

— Driving support system

e Estimate the visibility of signboards and guide plates




Visual attention

Bottom-up
— When people view a scene with no intention
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* Top-down

— When people view a scene with intention




Visual attention

* Bottom-up
— When people view a scene with no intention

* Top-down

— When people view a scene with intention




Purpose

* We estimate target-specific visual attention
during the visual search task.

1.Memorize a target object
Target image

2.Search the target ”

*We employed object images of ' -
&VISRA Salient Object Database. Panel |mage/

)

XY ¢

TR W -

¢
¥

F N
i

L A Bl XY

oo




Related works

* Bottom-up visual attention estimation
— Itti’s Saliency map model
— Only use input image
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Related works

* Top-down visual attention estimation
— Derive from Itti’s Saliency map model
— Use knowledge of target object

Saliency map model

Intensity Orientation

Weight modulation

Target-specific 2
attention map




Related works

* Frintrop [2005], Navalpakkam [2006]

— Consider a relationship between target and distractors
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Solutions

Mean value can’t
represent the
detailed
characteristics of
distribution. /

Input image

e

U

It is difficult to estimate if input image contains
complicated visual feature.
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Approach

Input image



Solutions

1. Calculate spatially localized weights
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Solutions
2. Calculate the weights based on similarities

between feature distributions

mean mean

N\/\

mean mean

.

=

\

@o,

12



Linear separability of
visual feature distributions
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Linear separability

Ex: Color featurel!l
Y

Y
T
Case:A A Case:B O Target

@ -Distractor

Y-Yellow
R-Red
\ 4 \ 4 B-Blue
B B G-Green
Variance ratio : High Variance ratio : Low
easy to search difficult to search

[1] John Hodsoll and Glyn W Humphereys, “Driving attention with top down: The relative contribution

of target templates to the linear sepaprability effect in the size dimension”, Perception and
psychophysics, 63(5) , pp.918-926, 2001. 14



Linear separability
Ex: Color featurelll

Variance ratio : High Variance ratio : Low
easy to search difficult to search

[1] John Hodsoll and Glyn W Humphereys, “Driving attention with top down: The relative contribution
of target templates to the linear sepaprability effect in the size dimension”, Perception and
psychophysics, 63(5) , pp.918-926, 2001. 15




Proposed model

e Extention of Itti’s bottom-up saliency map model

Orientation

Target-specific
attention map
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Proposed model(1/3)

e Extention of Itti’s bottom-up saliency map model

M olo Extraction of

visual features

Target-specific
attention map
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Extraction of visual features

. Panel image ? 1 s e (0°, 45°,
* Extract visual features 13388 oA
Feature map o
to create feature maps e color loﬁengatiqn
as with Itti’s model o o

Target image

&
Feature map |
Intensity Color Orientation
(RG,BY) (0,45,
90°,135")




Proposed model(2/3)

e Extention of Itti’s bottom-up saliency map model

&—

Target-specific
attention map

Weight
modulation
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Region segmentation

* Weight modulation based on the relationships
between target and each object

Ex. Color RG
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Weight modulation

 Modulate the weight of feature maps based on
the linear separability of visual search

—>Use the Fisher’

s variance ratio (/)

Low /> The object is similar to the target

—>Give

High [->The o
—>Give

higher weight

pject is not similar to the target
lower weight
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Weight modulation

* Modulate the weight of feature maps based on
the linear separability of visual feature distributions

- Linearly separable  Nonlinearly separable
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Fisher’s variance ratio ()
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@ -Distractor
J : High J : Low

Not similar to the target Similar to the target
—Give lower weight  —>Give higher weight




Calculation of spatially localized weights
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Calculation of spatially localized welghts
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Proposed model(3/3)

* Extension of Itti’s bottom-up saliency map
model

Input image

W Orientation

Feature integration
and normalization

s

Target-specific
attention map
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Feature integration and normalization

* Integrate the weighted seven feature maps into a
target-specific attention map and normalize it
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Orientation
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Feature integration and normalization

* Integrate the weighted seven feature maps into a
target-specific attention map and normalize it

Similar in color

Target object
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Experiment evaluation

* Measure gaze data
during visual search

* Participant:10 people
(Male:9, Female:1)

— 100 trials X 10 people
— 740 fixation sequences




Gaze data

* Calculate gazed areas from gaze points

Gazed area
Gazed . g
soint Error range of eye tracker(visual angle:1.0 )
® +
Visual range of central fovea(visual angle:2.0 )
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Measures for approach
 Normalized Scanpath Saliency(NSS)
— Response value at the gaze point on the attention map

B % v B = & = NSS:
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> @ v average value
w oz ¢ 99n i
CEVLIEIEER Attention map

* Top measurements based on NSS
— Ave. NSS : Average of NSS at gazed areas

— Ave. NUSS : Average of the response values except at the
gazed areas to evaluate false detection

 Comparative model
— Itti’s model and Frintrop’s model
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A comparative model

* Frintrop’s top-down visual attention
computational model

— Modulation the weight based on relationship
between target and all objects

— Apply the weight to the overall feature map
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**: p < 0.01
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Result(Average NSS)
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Average NUSS
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Result(Average NUSS)
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Higher NSS in our model
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Lower NSS in our model
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Lower NSS in our model
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Conclusions

* Target-specific visual attention computational
model.

— Extension of Itti’s bottom-up saliency map model

— Application of psychophysical findings on visual
search to weight modulation of visual feature map

* High estimation accuracy of visual attention
— High normalized scanpath saliency (NSS)
— Less false detection
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Future works

* Evaluate the sequence of scan path

* Design a generalized model without region
segmentation

e Verify our model using natural images
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