Top-down Visual Attention Computational Model Using Visual Feature Distribution of Search Target

> TOSHIYA OHIRA, TAKATSUGU HIRAYAMA, SHOHEI USUI, SHOTA SATO, KENJI MASE

> Graduate School of Information Science, Nagoya University

#### Backgrounds

- Gaze based Human Computer Interaction
  - A human-friendly robot
    - Establish joint attention and mutual gaze with humans
  - Driving support system
    - Estimate the visibility of signboards and guide plates

Human visual attention is important for designing gaze based systems.

#### Visual attention

• Bottom-up

- When people view a scene with no intention



- Top-down
  - When people view a scene with intention



#### Visual attention

• Bottom-up

- When people view a scene with no intention



- Top-down
  - When people view a scene with intention



#### Purpose

• We estimate target-specific visual attention during the visual search task.



#### **Related works**

- Bottom-up visual attention estimation
  - Itti's Saliency map model
  - Only use input image



#### **Related works**

- Top-down visual attention estimation
  - Derive from Itti's Saliency map model
  - Use knowledge of target object



#### **Related works**

Frintrop [2005], Navalpakkam [2006]
 Consider a relationship between target and distractors





It is difficult to estimate if input image contains complicated visual feature.



We focus on each object in panel image.
 →Calculate spatially localized weights

#### Solutions

#### 1. Calculate spatially localized weights



#### Solutions

2. Calculate the weights based on similarities between feature distributions

Relationship between mean value of visual features



Proposed

Related

works

Linear separability of visual feature distributions



# Linear separability of visual feature distributions

<Psychophysical findings>
Linear separability of visual feature distributions
affects the performance of visual search.

#### Linear separability

#### Ex: Color feature<sup>[1]</sup>



# Variance ratio : HighVariance ratio : Loweasy to searchdifficult to search

[1] John Hodsoll and Glyn W Humphereys, "Driving attention with top down: The relative contribution of target templates to the linear sepaprability effect in the size dimension", Perception and psychophysics, 63(5), pp.918-926, 2001.

#### Linear separability

#### Ex: Color feature<sup>[1]</sup>

Linearly separable

Nonlinearly separable

Weight modulation of visual feature based on the inverse of variance ratio between the visual feature distribution of target and each object

# Variance ratio : HighVariance ratio : Loweasy to searchdifficult to search

[1] John Hodsoll and Glyn W Humphereys, "Driving attention with top down: The relative contribution of target templates to the linear sepaprability effect in the size dimension", Perception and psychophysics, 63(5), pp.918-926, 2001.

#### **Proposed model**

• Extention of Itti's bottom-up saliency map model



# Proposed model(1/3)

Extention of Itti's bottom-up saliency map model



#### Extraction of visual features

 Extract visual features to create feature maps as with Itti's model



# Proposed model(2/3)

Extention of Itti's bottom-up saliency map model



#### **Region segmentation**

 Weight modulation based on the relationships between target and each object

Segment each feature map into equal sub regions

Ex. Color RG





#### Weight modulation

 Modulate the weight of feature maps based on the linear separability of visual search →Use the Fisher's variance ratio (])

Low  $J \rightarrow$  The object is similar to the target  $\rightarrow$  Give higher weight

High  $J \rightarrow$  The object is not similar to the target  $\rightarrow$  Give lower weight

$$w = \frac{1}{J}$$

#### Weight modulation

 Modulate the weight of feature maps based on the linear separability of visual feature distributions



#### Calculation of spatially localized weights





Feature map (Target image)

#### Feature map (Panel image)



#### Calculation of spatially localized weights



Feature map (Panel image)



Feature map (Target image)



# Proposed model(3/3)

 Extension of Itti's bottom-up saliency map model



#### Feature integration and normalization

 Integrate the weighted seven feature maps into a target-specific attention map and normalize it



#### Feature integration and normalization

 Integrate the weighted seven feature maps into a target-specific attention map and normalize it



#### Input image



Target-specific attention map

#### **Experiment evaluation**

 Measure gaze data during visual search

- Participant:10 people
   (Male:9, Female:1)
  - 100 trials × 10 people740 fixation sequences



#### Gaze data

Calculate gazed areas from gaze points





Gazed points (fixation data)

Gazed areas

# Measures for approach

- Normalized Scanpath Saliency(NSS)
  - Response value at the gaze point on the attention map





- Top measurements based on NSS
  - Ave. NSS : Average of NSS at gazed areas
  - Ave. NUSS : Average of the response values except at the gazed areas to evaluate false detection
- Comparative model
  - Itti's model and Frintrop's model

#### A comparative model

- Frintrop's top-down visual attention computational model
  - Modulation the weight based on relationship between target and all objects
  - -Apply the weight to the overall feature map



#### Result(Average NSS)



#### Result(Average NSS)



Higher average NSS →Our model can estimate actual focused areas

#### Result(Average NUSS)



#### Result(Average NUSS)



Lower average NUSS →Our model can suppress false detection

### Higher NSS in our model



Panel image



Gazed areas

High response except at gazed areas (High false detection rate)

High response at gazed areas (High detection rate)









Proposed

#### Lower NSS in our model



Panel image



Gazed areas

Low bottom up saliency at target area Low response at the target area (Low detection rate)



#### Lower NSS in our model



### Conclusions

- Target-specific visual attention computational model.
  - Extension of Itti's bottom-up saliency map model
  - Application of psychophysical findings on visual search to weight modulation of visual feature map
- High estimation accuracy of visual attention

   High normalized scanpath saliency (NSS)
   Less false detection

#### Future works

• Evaluate the sequence of scan path

 Design a generalized model without region segmentation

• Verify our model using natural images